Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces

  • G. E. Schröder-TurkEmail author
  • A. Fogden
  • S. T. Hyde
Interdisciplinary Physics


Balanced infinite periodic minimal surface families that contain the cubic Gyroid (G), Diamond (D) and Primitive (P) surfaces are studied in terms of their global packing and local curvature properties. These properties are central to understanding the formation of mesophases in amphiphile and copolymer molecular systems. The surfaces investigated are the tetragonal, rhombohedral and hexagonal tD, tP, tG, rG, rPD and H surfaces. These non-cubic minimal surfaces furnish topology-preserving transformation pathways between the three cubic surfaces. We introduce `packing (or global) homogeneity', defined as the standard deviation Δd of the distribution of the channel diameter throughout the labyrinth, where the channel diameter d is determined from the medial surface skeleton centered within the labyrinthine domains. Curvature homogeneity is defined similarly as the standard deviation ΔK of the distribution of Gaussian curvature. All data are presented for distinct length normalisations: constant surface-to-volume ratio, constant average Gaussian curvature and constant average channel diameter. We provide first and second moments of the distribution of channel diameter for all members of these surfaces complementing curvature data from [A. Fogden, S. Hyde, Eur. Phys. J. B 7, 91 (1999)]. The cubic G and D surfaces are deep local minima of Δd along the surface families (with G more homogeneous than D), whereas the cubic P surface is an inflection point of Δd with adjacent, more homogeneous surface members. Both curvature and packing homogeneity favour the tetragonal route between G and D (via tG and tD surfaces) in preference to the rhombohedral route (via rG and rPD).


02.40.-k Geometry, differential geometry, and topology 61.30.St Lyotropic phases 81.16.Dn Self-assembly 82.35.Jk Copolymers, phase transitions, structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Pisani, S. Bernstorff, C. Ferrero, P. Mariani, J. Phys. Chem. B 105, 3109 (2001) CrossRefGoogle Scholar
  2. L. Saturni, F. Rustichelli, G. Di Gregorio, L. Cordone, P. Mariani, Phys. Rev. E 64, 040202 (2001) CrossRefGoogle Scholar
  3. A. Squires, R. Templer, O. Ces, A. Gabke, J. Woenckhaus, J. Seddon, R. Winter, Langmuir 16, 3578 (2000) CrossRefGoogle Scholar
  4. A. Squires, R. Templer, J. Seddon, A. Gabke, J. Woenckhaus, R. Winter, T. Narayanan, S. Finet, Phys. Rev. E 72, 011502 (2005) CrossRefADSGoogle Scholar
  5. R.H. Templer, J.M. Seddon, N.A. Warrender, A. Syrykh, Z. Huang, R. Winter, J. Erbes, J. Phys. Chem. 102, 7251 (1998) Google Scholar
  6. L. Ellison, D. Michel, F. Barmes, D. Cleaver, Phys. Rev. Lett. 97, 297801 (2006) CrossRefGoogle Scholar
  7. T.F. Bailey, M. Cordell, T. Epps, F. Bates, Macromolecules 35, 7007 (2002) CrossRefGoogle Scholar
  8. T.H. Epps, E.W. Cochran, T.S. Bailey, R.S. Waletzko, C.M. Hardy, F. Bates, Macromolecules 37, 8325 (2004) CrossRefGoogle Scholar
  9. G. Schröder, Ph.D. thesis, Australian National University, Canberra, Australia (2005) Google Scholar
  10. H. Blum, J. Theor. Biol. 38, 205 (1973) CrossRefMathSciNetGoogle Scholar
  11. L.R. Nackman, Computer Graphics and Image Processing 20, 43 (1982) CrossRefGoogle Scholar
  12. G.E. Schröder, S.J. Ramsden, A.E. Christy, S.T. Hyde, Eur. Phys. J. B 35, 551 (2003) CrossRefADSGoogle Scholar
  13. A. Fogden, S. Hyde, Eur. Phys. J. B 7, 91 (1999) CrossRefADSGoogle Scholar
  14. D.M. Anderson, S.M. Gruner, S. Leibler, Proc. Natl. Acad. Sci. USA 85, 5364 (1988) CrossRefADSGoogle Scholar
  15. J. Sadoc, J. Charvolin, J. Phys. France 48, 1559 (1987) Google Scholar
  16. W. Helfrich, H. Rennschuh, Landau Theory of the Lamellar-to-Cubic Phase Transition, in Colloque de Physique C7-1990 (1990), Supplément au J. Phys. France, pp. 189–195 Google Scholar
  17. S. Hyde, Curvature and the global structure of interfaces in surfactant-water systems, in Colloque de Physique C7-1990 (1990), Supplément au Journal de Physique, pp. 209–228 Google Scholar
  18. U. Schwarz, G. Gompper, Phys. Rev. E 59(5), 5528 (1999) CrossRefGoogle Scholar
  19. U. Schwarz, G. Gompper, Phys. Rev. Lett. 85(7), 1472 (2000) CrossRefGoogle Scholar
  20. P. Duesing, R. Templer, J. Seddon, Langmuir 13, 351 (1997) CrossRefGoogle Scholar
  21. S. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh, S. Lidin, B. Ninham, The Language of Shape, 1st edn. (Elsevier Science B. V., Amsterdam, 1997) Google Scholar
  22. A. Schoen, Tech. rep., NASA (1970) Google Scholar
  23. G. Schröder, S. Ramsden, A. Fogden, S. Hyde, Physica A 339, 137 (2004) CrossRefADSGoogle Scholar
  24. W. Helfrich, Z. Naturforsch. 28c, 693 (1973) MathSciNetGoogle Scholar
  25. J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, J. Chem. Soc. Faraday Trans. 2 72, 1525 (1976) CrossRefGoogle Scholar
  26. D. Hilbert, Transactions of the A.M.S. 2 pp. 87–99 (1901) Google Scholar
  27. M. Spivak, Comprehensive Introduction to Differential Geometry, Vol. 3 (Wilmington, DE, Publish or Perish Press, 1979) Google Scholar
  28. V. Luzzati, R. Vargas, P. Mariani, A. Gulik, H. Delacroix, J. Mol. Biol. 229, 540 (1993) CrossRefGoogle Scholar
  29. H. Hasegawa, H. Tanaka, T. Hashimoto, C. Han, Macromolecules 20, 2120 (1987) CrossRefGoogle Scholar
  30. H. Hasegawa, H. Tanaka, K. Yamasaki, T. Hashimoto, Macromolecules 20, 1651 (1987) CrossRefGoogle Scholar
  31. E. Thomas, D. Anderson, C. Henkee, D. Hoffman, Nature 334, 598 (1988) CrossRefADSGoogle Scholar
  32. A. Fogden, S. Hyde, G. Lundberg, J. Chem. Soc. Faraday Trans 87 (7), 949 (1991) CrossRefGoogle Scholar
  33. R. Bruinsma, J. Phys. II France 2, 425 (1992) CrossRefGoogle Scholar
  34. P. Barois, S. Hyde, B. Ninham, T. Dowling, Langmuir 6, 1136 (1990) CrossRefGoogle Scholar
  35. G. Schröder-Turk, A. Fogden, S. Hyde, in preparation (2007) Google Scholar
  36. G. Schröder-Turk, A. Sheppard, S. Hyde, in preperation (2007) Google Scholar
  37. H. Karcher, Manuscripta Math. 62, 83 (1988) CrossRefMathSciNetGoogle Scholar
  38. H. Schwarz, Gesammelte Mathematische Abhandlungen. 2 Bände. (Springer, Berlin, 1890) Google Scholar
  39. A. Fogden, M. Haeberlein, S. Lidin, J. Phys. I France 3, 2371 (1993) CrossRefMathSciNetGoogle Scholar
  40. S. Lidin, S. Larsson, J. Chem. Soc. Faraday Trans. 86 (5), 769 (1990) CrossRefGoogle Scholar
  41. A. Fogden, S. Hyde, Acta Cryst. A48, 442 (1992) Google Scholar
  42. A. Fogden, S. Hyde, Acta Cryst. A48, 575 (1992) Google Scholar
  43. H. Von Schnering, R. Nesper, Angew. Chem. Int. Ed. Engl. 26, 1059 (1987) CrossRefGoogle Scholar
  44. H. Von Schnering, R. Nesper, Z. Phys. B – Condensed Matter 83, 407 (1991) CrossRefGoogle Scholar
  45. M. Wohlgemuth, N. Yufa, J. Hoffman, E. Thomas, Macromolecules 34, 6083 (2001) CrossRefGoogle Scholar
  46. E. Sherbrooke, N.M. Patrikalakis, F.E. Wolter, Graphical Models and Image Processing 58(6), 574 (1996) CrossRefGoogle Scholar
  47. N. Amenta, S. Choi, R. Kolluri, Computational Geometry: Theory and Applications 19(2-3), 127 (2001) Google Scholar
  48. N. Amenta, S. Choi, G. Rote, Incremental Constructions con BRIO, in SoCG'03, June 8–10, 2003, San Diego, California, USA (2003), pp. 211–219 Google Scholar
  49. D. Attali, A. Montanvert, Computer Vision and Image Understanding 67(3), 261 (1997) CrossRefGoogle Scholar
  50. J. Boissonnat, F. Cazals, Natural coordinates of points on a surface, in Proceedings of the 16th Annual ACM Symposium on Computational Geometry (2000), pp. 223–232 Google Scholar
  51. T.K. Dey, W. Zhao, Approximate medial axis as a voronoi subcomplex, in Proceedings of the seventh ACM symposium on Solid modeling and applications (ACM Press, 2002), pp. 356–366, ISBN 1-58113-506-8 Google Scholar
  52. J. Goldak, X. Yu, A. Knight, L. Dong, Int. J. Computational Geometry and its Applications 1, 327 (1991) CrossRefMathSciNetGoogle Scholar
  53. D. Sheehy, C. Armstrong, D. Robinson, IEEE Transactions on Visualization and Computer Graphics 2(1), 61 (1996) Google Scholar
  54. K. Grosse-Braukmann, J. Colloid and Interface Science 187, 418 (1997) CrossRefGoogle Scholar
  55. V. Luzzati, A. Tardieu, T. Gulik-Krzywicki, E. Rivas, F. Reiss-Husson, Nature (London) 220, 485 (1968) CrossRefADSGoogle Scholar
  56. K. Larsson, F. Tiberg, Current Opinion in Colloid and Interface Science 9, 365 (2005) CrossRefGoogle Scholar
  57. A. Finnefrock, R. Ulrich, G. Toomes, S. Gruner, U. Wiesner, J. Am. Chem. Soc. 125, 13084 (2003) CrossRefGoogle Scholar
  58. P. Kekicheff, B. Cabane, J. Phys. France 48(9), 1571 (1987) Google Scholar
  59. A. Levelut, M. Clerc, Liquid Crystals 24(1), 105 (1998) Google Scholar
  60. M. O'Keeffe, B. Hyde, Crystal Structures, I. Patterns and Symmetry (Mineralogical Society of America Washington, USA, 1996) Google Scholar
  61. S. Tolbert, T. Schaffer, J. Feng, P. Hansma, G. Stucky, Chemistry of Materials 9(9), 1962 (1997), CrossRefGoogle Scholar
  62. S. Tolbert, T. Schaffer, J. Feng, P. Hansma, G. Stucky, Chemistry of Materials 9(9), 1962 (1997), 10.1021/cm960454o CrossRefGoogle Scholar
  63. M. Clerc, J. Phys. II France 6, 961 (1996) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Dept. of Applied Maths, Research School of Physical Sciences, Australian National UniversityCanberraAustralia

Personalised recommendations