The European Physical Journal B

, Volume 54, Issue 2, pp 189–200 | Cite as

Rashba billiards

Solids and Liquids

Abstract.

We study the energy levels of non-interacting electrons confined to move in two-dimensional billiard regions and having a spin-dependent dynamics due to a finite Rashba spin splitting. The free space Green's function for such Rashba billiards is constructed analytically and used to find the area and perimeter contributions to the density of states, as well as the corresponding smooth counting function. We show that, in contrast to systems with spin-rotational invariance, Rashba billiards always possess a negative energy spectrum. A semi-classical analysis is presented to interpret the singular behavior of the density of states at certain negative energies for circular Rashba billiards. Our detailed analysis of the spin structure of circular Rashba billiards reveals a finite out-of-plane spin projection for electron eigenstates.

PACS.

73.21.La Quantum dots 71.70.Ej Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect 05.45.Mt Quantum chaos; semiclassical methods 03.65.Sq Semiclassical theories and applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Semiconductor Spintronics and Quantum Computation, edited by D.D. Awschalom, D. Loss, N. Samarth (Springer, Berlin, 2002) Google Scholar
  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001) ADSCrossRefGoogle Scholar
  3. G. Lommer, F. Malcher, U. Rössler, Phys. Rev. Lett. 60, 728 (1988) ADSCrossRefGoogle Scholar
  4. E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960); [Sov. Phys. Solid State 2, 1109 (1960)] Google Scholar
  5. J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Phys. Rev. Lett. 78, 1335 (1997) ADSCrossRefGoogle Scholar
  6. T. Schäpers, G. Engels, J. Lange, Th. Klocke, M. Hollfelder, H. Lüth, J. Appl. Phys. 83, 4324 (1998) ADSCrossRefGoogle Scholar
  7. Y. Sato, T. Kita, S. Gozu, S. Yamada, J. Appl. Phys. 89, 8017 (2001) ADSCrossRefGoogle Scholar
  8. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990) ADSCrossRefGoogle Scholar
  9. F. Mireles, G. Kirczenow, Phys. Rev. B 64, 024426 (2001) ADSCrossRefGoogle Scholar
  10. W. Häusler, Phys. Rev. B 63, 121310(R) (2001) ADSCrossRefGoogle Scholar
  11. M. Governale, U. Zülicke, Phys. Rev. B 66, 073311 (2002) ADSCrossRefGoogle Scholar
  12. T. Schäpers, J. Knobbe, V.A. Guzenko, Phys. Rev. B 69, 235323 (2004) ADSCrossRefGoogle Scholar
  13. J. Splettstoesser, M. Governale, U. Zülicke, Phys. Rev. B 68, 165341 (2003) ADSCrossRefGoogle Scholar
  14. P. Földi, B. Molnár, M.G. Benedict, F.M. Peeters, Phys. Rev. B 71, 033309 (2005) ADSCrossRefGoogle Scholar
  15. O. Voskoboynikov, C.P. Lee, O. Tretyak, Phys. Rev. B 63, 165306 (2001) ADSCrossRefGoogle Scholar
  16. M. Governale, Phys. Rev. Lett. 89, 206802 (2002) ADSCrossRefGoogle Scholar
  17. M. Valín-Rodríguez, A. Puente, L. Serra, Phys. Rev. B 69, 085306 (2004) ADSCrossRefGoogle Scholar
  18. E.N. Bulgakov, A.F. Sadreev, Phys. Rev. B 66, 075331 (2002) ADSCrossRefGoogle Scholar
  19. M. Valín-Rodríguez, A. Puente, L. Serra, Phys. Rev. B 69, 153308(R) (2004) ADSCrossRefGoogle Scholar
  20. C.F. Destefani, S.E. Ulloa, G.E. Marques, Phys. Rev. B 69, 125302(R) (2004) ADSCrossRefGoogle Scholar
  21. O. Zaitsev, D. Frustaglia, K. Richter, Phys. Rev. Lett. 94, 026809 (2005) ADSCrossRefGoogle Scholar
  22. E.N. Bulgakov, A.F. Sadreev, JETP Letters 78, 443 (2003); E.N. Bulgakov, A.F. Sadreev, Phys. Rev. E 70, 056211 (2004); A.I. Saichev, H. Ishio, A.F. Sadreev, K.-F. Berggren, J. Phys. A 35, L87 (2002) ADSCrossRefGoogle Scholar
  23. K.-F. Berggren, T. Ouchterlony, Found. Phys. 31, 233 (2001) CrossRefGoogle Scholar
  24. I.L. Aleiner, V.I. Fal'ko, Phys. Rev. Lett. 87, 256801 (2001); J.-H. Cremers, P.W. Brouwer, V.I. Fal'ko, Phys. Rev. B 68, 125329 (2003) ADSCrossRefGoogle Scholar
  25. Yu.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1884) ADSCrossRefGoogle Scholar
  26. H. Weyl, Göttinger Nachrichten 110, 114 (1911) Google Scholar
  27. H.T. Baltes, E.R. Hilf, Spectra of Finite Systems (Bibliographisches Institut Wissenschaftsverlag, Mannheim, 1976) Google Scholar
  28. M. Brack, R.K. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, 1997 Google Scholar
  29. M. Kac, Am. Math. Monthly 73, 1 (1966) CrossRefMathSciNetGoogle Scholar
  30. R. Balian, C. Bloch, Ann. Phys. (N.Y.) 60, 401 (1970) ADSCrossRefMathSciNetMATHGoogle Scholar
  31. K. Stewartson, R.T. Waechter, Proc. Cambridge Philos. Soc. 69, 581 (1971) Google Scholar
  32. M. Berry, C.J. Howls, Proc. R. Soc. Lond. A 447, 527 (1994) ADSMathSciNetCrossRefMATHGoogle Scholar
  33. M. Sieber, H. Primack, U. Smilansky, I. Ussishkin, H. Schanz, J. Phys. A 28, 5041 (1995) ADSCrossRefMathSciNetMATHGoogle Scholar
  34. Chaos and Quantum Physics, edited by M.-J. Giannoni, A. Voros, J. Zinn-Justin (Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1991) Google Scholar
  35. M.V. Berry, R.J. Mondragon, Proc. R. Soc. Lond. A 412, 53 (1987) ADSMathSciNetGoogle Scholar
  36. E.N. Bulgakov, A.F. Sadreev, JETP Letters 73, 505 (2001) ADSCrossRefGoogle Scholar
  37. E. Tsitsishvili, G.S. Lozano, A.O. Gogolin, Phys. Rev. B 70, 115316 (2004) ADSCrossRefGoogle Scholar
  38. C.-H. Chang, A.G. Mal'shukov, K.A. Chao, Phys. Rev. B 70, 245309 (2004) ADSCrossRefGoogle Scholar
  39. J. Cserti, A. Csordás, U. Zülicke, Phys. Rev. B 70, 233307 (2004) ADSCrossRefGoogle Scholar
  40. R.G. Littlejohn, W.G. Flynn, Phys. Rev. A 45, 7697 (1992) ADSCrossRefMathSciNetGoogle Scholar
  41. M. Pletyukhov, Ch. Amann, M. Mehta, M. Brack, Phys. Rev. Lett. 89, 116601 (2002); Ch. Amann, M. Brack, J. Phys. A 35, 6009 (2002) ADSCrossRefGoogle Scholar
  42. J.D. Walls, J. Huang, R.M. Westervelt, E.J. Heller, e-print arXiv:cond-mat/0507528 Google Scholar
  43. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New-York, 1972) Google Scholar
  44. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 5th edn. (Academic Press, San Diego, 1994) Google Scholar
  45. M. Berry in reference Q-billiard:konyv, p. 251 Google Scholar
  46. Y. Décanini, A. Folacci, Phys. Rev. E 68, 046204 (2003) ADSCrossRefMathSciNetGoogle Scholar
  47. R. de Sousa, S. Das Sarma, Phys. Rev. B 68, 155330 (2003) ADSCrossRefGoogle Scholar
  48. C. Schmit in reference Q-billiard:konyv, p. 331; A. Csordás, R. Graham, P. Szépfalusy, Phys. Rev. A 44, 1491 (1991) CrossRefGoogle Scholar
  49. C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997) ADSCrossRefGoogle Scholar
  50. E.A. de Andrada e Silva, G.C. La Rocca, F. Bassani, Phys. Rev. B 50, 8523 (1994) ADSCrossRefGoogle Scholar
  51. J. Schliemann, J. Carlos Egues, D. Loss, Phys. Rev. Lett. 90, 146801 (2003) ADSCrossRefGoogle Scholar
  52. V.N. Gridnev, JETP Lett. 74, 380 (2001) ADSCrossRefGoogle Scholar
  53. E.Ya. Sherman, Appl. Phys. Lett. 82, 209 (2003); L.E. Golub, E.L. Ivchenko, Phys. Rev. B 69, 115333 (2004); M.M. Glazov, E.Ya. Sherman, Phys. Rev. B 71, 241312(R) (2005); E.Ya. Sherman, D.J. Lockwood, Phys. Rev. B 72, 125314 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • A. Csordás
    • 1
  • J. Cserti
    • 2
  • A. Pályi
    • 2
  • U. Zülicke
    • 3
  1. 1.Research Group for Statistical Physics of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Department of Physics of Complex SystemsEötvös UniversityBudapestHungary
  3. 3.Institute of Fundamental Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey UniversityPalmerston NorthNew Zealand

Personalised recommendations