Quantum adiabatic polarons by translationally invariant perturbation theory

  • O. S. BarišićEmail author
  • S. Barišić
Solids and Liquids


The translationally invariant diagrammatic quantum perturbation theory (TPT) is applied to the polaron problem on the 1D lattice, modeled through the Holstein Hamiltonian with the phonon frequency ω0, the electron hopping t and the electron-phonon coupling constant g. The self-energy diagrams of the fourth-order in g are calculated exactly for an intermittently added electron, in addition to the previously known second-order term. The corresponding quadratic and quartic corrections to the polaron ground state energy become comparable at t/ω0>1 for g/ω0∼(t/ω0) 1/4 when the electron self-trapping and translation become adiabatic. The corresponding non adiabatic/adiabatic crossover occurs while the polaron width is large, i.e. the lattice coarsening negligible. This result is extended to the range (t/ω0)1/2>g/ω0>(t/ω0)1/4>1 by considering the scaling properties of the high-order self-energy diagrams. It is shown that the polaron ground state energy, its width and the effective mass agree with the results found traditionally from the broken symmetry side, kinematic corrections included. The Landau self-trapping of the electron in the classic self-consistent, localized displacement potential, the restoration of the translational symmetry by the classic translational Goldstone mode and the quantization of the polaronic translational coordinate are thus all encompassed by a quantum theory which is translationally invariant from the outset. This represents the first example, open to various generalizations, of the capability of TPT to hold through the adiabatic symmetry breaking crossover. Plausible arguments are also given that TPT can describe the g/ω0>(t/ω0)1/2 regime of the small polaron with adiabatic or non-adiabatic translation, i.e., that TPT can cover the whole g/ω0, t/ω0 parameter space of the Holstein Hamiltonian.


71.38.-k Polarons and electron-phonon interactions  63.20.Kr Phonon-electron and phonon-phonon interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Fröhlich, Proc. Roy. Soc. London, Ser. A 223, 296 (1954) zbMATHGoogle Scholar
  2. A.S. Davydov, N.I. Kislukha, Phys. Status Solidi B 59, 465 (1973) Google Scholar
  3. P.-G. de Gennes, Phys. Rev. 118, 141 (1960) CrossRefADSGoogle Scholar
  4. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973) CrossRefADSGoogle Scholar
  5. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1987) CrossRefADSGoogle Scholar
  6. L.D. Landau, Phys. Zeitschrift Sowjetunion 3, 664 (1933) Google Scholar
  7. L.D. Landau, S.I. Pekar, Zh. Experim. i Teor. Fiz. 18, 419 (1948) Google Scholar
  8. P.B. Shaw, E.W. Young, Phys. Rev. B 24, 714 (1981) CrossRefADSGoogle Scholar
  9. T.D. Holstein, L.A. Turkevich, Phys. Rev. B 38, 1901 (1988) CrossRefADSGoogle Scholar
  10. B. Gerlach, H.Löwen, Phys. Rev. B 35, 4291 (1987); B. Gerlach, H.Löwen, Rev. Mod. Phys. 63, 63 (1991); H. Löwen, Phys. Rev. B 37, 8661 (1988) CrossRefADSGoogle Scholar
  11. A.S. Alexandrov, V.V. Kabanov, D.K. Ray, Phys. Rev. B 49, 9915 (1994); A.S. Alexandrov, V.V. Kabanov, Phys. Rev. B 54, 3655 (1996) CrossRefMathSciNetADSGoogle Scholar
  12. P.E. Spencer, J.H. Samson, P.E. Kornilovitch, A.S. Alexandrov, Phys. Rev. B 71, 184310 (2005) CrossRefADSGoogle Scholar
  13. E.N. Myasnikov, A.E. Myasnikova, F.V. Kusmartsev, Phys. Rev. B 72, 224303 (2005) CrossRefADSGoogle Scholar
  14. A.S. Alexandrov, Europhys. Lett. 56, 92 (2001) CrossRefADSGoogle Scholar
  15. J.P. Hague, P.E. Kornilovitch, A.S. Alexandrov, J.H. Samson, Phys. Rev. 73, 054303 (2006) ADSGoogle Scholar
  16. R.E. Peierls, Proc. Phys. Soc. London 52, 23 (1940); F.R.N. Nabarro, Proc. Phys. Soc. London 59, 256 (1947) CrossRefGoogle Scholar
  17. I.E. Dzyaloshinskii, Nobel Symposium 24, 143 (1973), edited by B. Lundquist, S. Lundquist (Academic Press, N.Y. and London) Google Scholar
  18. O.S. Barišić, Phys. Rev. B 73, 214304 (2006) CrossRefADSGoogle Scholar
  19. E.I. Rashba, Opt. Spectrosk. 2, 664 (1957) Google Scholar
  20. T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959) CrossRefADSGoogle Scholar
  21. A.A. Abrikosov, L.P. Gor'kov, I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Dover Publications, New York, 1963) Google Scholar
  22. S. Ciuchi, F. de Pasquale, D. Feinberg, Europhys. Lett. 30, 151 (1995); S. Ciuchi, F. de Pasquale, S. Fratini, D. Feinberg, Phys. Rev. B 56, 4494 (1997) Google Scholar
  23. A.S. Mishchenko, N. Nagaosa, N.V. Prokof'ev, A. Sakamoto, B.V. Svistunov, Phys. Rev. B 66, R20301 (2002); A.S. Mishchenko, N. Nagaosa, Phys. Rev. Lett. 93, 036402 (2004) CrossRefADSGoogle Scholar
  24. O.S. Barišić, S. Barišić, Fizika A 14, 153 (2005), Google Scholar
  25. A.B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov. Phys. JETP 7, 7989 (1958)] MathSciNetGoogle Scholar
  26. D. Emin, Phys. Rev. B 48, 13691 (1993); G. Kalosakas, S. Aubry, G.P. Tsironis, Phys. Rev. B 58, 3094 (1998) CrossRefADSGoogle Scholar
  27. K. Uzelac, S. Barišić, J. Phys. Lett. France 38, L-47 (1977) Google Scholar
  28. Y.S. Kivshar, D.K. Campbell, Phys. Rev. E 48, R3077 (1993); D. Cai, A.R. Bishop, N. Grønbech-Jensen, Phys. Rev. E 53, 4131 (1996); L. Brizhik, A. Eremko, L. Cruzeiro-Hansson, Y. Olkhovska, Phys. Rev. B 61, 1129 (2000) MathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of PhysicsZagrebCroatia
  2. 2.Department of PhysicsFaculty of Science, University of ZagrebZagrebCroatia

Personalised recommendations