Advertisement

Lynden-Bell and Tsallis distributions for the HMF model

  • P. H. ChavanisEmail author
Statistical and Nonlinear Physics

Abstract.

Systems with long-range interactions can reach a Quasi Stationary State (QSS) as a result of a violent collisionless relaxation. If the system mixes well (ergodicity), the QSS can be predicted by the statistical theory of Lynden-Bell (1967) based on the Vlasov equation. When the initial condition takes only two values, the Lynden-Bell distribution is similar to the Fermi-Dirac statistics. Such distributions have recently been observed in direct numerical simulations of the HMF model (Antoniazzi et al. 2006). In this paper, we determine the caloric curve corresponding to the Lynden-Bell statistics in relation with the HMF model and analyze the dynamical and thermodynamical stability of spatially homogeneous solutions by using two general criteria previously introduced in the literature. We express the critical energy and the critical temperature as a function of a degeneracy parameter fixed by the initial condition. Below these critical values, the homogeneous Lynden-Bell distribution is not a maximum entropy state but an unstable saddle point. Known stability criteria corresponding to the Maxwellian distribution and the water-bag distribution are recovered as particular limits of our study. In addition, we find a critical point below which the homogeneous Lynden-Bell distribution is always stable. We apply these results to the situation considered in Antoniazzi et al. For a given energy, we find a critical initial magnetization above which the homogeneous Lynden-Bell distribution ceases to be a maximum entropy state. For an energy U=0.69, this transition occurs above an initial magnetization Mx=0.897. In that case, the system should reach an inhomogeneous Lynden-Bell distribution (most mixed) or an incompletely mixed state (possibly fitted by a Tsallis distribution). Thus, our theoretical study proves that the dynamics is different for small and large initial magnetizations, in agreement with numerical results of Pluchino et al. (2004). This new dynamical phase transition may reconcile the two communities by showing that they study different regimes.

PACS.

05.20.-y Classical statistical mechanics 05.45.-a Nonlinear dynamics and chaos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dynamics and Thermodynamics of Systems with Long Range Interactions, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lect. Not. in Phys. 602 (Springer, 2002) Google Scholar
  2. T. Konishi, K. Kaneko, J. Phys. A 25, 6283 (1992) zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. S. Inagaki, T. Konishi, Publ. Astron. Soc. Jpn 45, 733 (1993) MathSciNetADSGoogle Scholar
  4. C. Pichon, Ph.D. thesis, Cambridge (1994) Google Scholar
  5. M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995) CrossRefADSGoogle Scholar
  6. V. Latora, A. Rapisarda, C. Tsallis, Phys. Rev. E 64, 056134 (2001); V. Latora, A. Rapisarda, C. Tsallis, Physica A 305, 129 (2002) CrossRefADSGoogle Scholar
  7. M.Y. Choi, J. Choi, Phys. Rev. Lett. 91, 124101 (2003) CrossRefADSGoogle Scholar
  8. A. Pluchino, V. Latora, A. Rapisarda, Physica D 193, 315 (2004) zbMATHCrossRefADSGoogle Scholar
  9. Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Physica A 337, 36 (2004) CrossRefADSGoogle Scholar
  10. F. Bouchet, Phys. Rev. E 70, 036113 (2004) CrossRefADSGoogle Scholar
  11. C. Anteneodo, R.O. Vallejos, Physica A 344, 383 (2004) MathSciNetCrossRefADSGoogle Scholar
  12. P.H. Chavanis, J. Vatteville, F. Bouchet, Eur. Phys. J. B 46, 61 (2005) CrossRefADSGoogle Scholar
  13. H. Morita, K. Kaneko, Phys. Rev. Lett. 94, 087203 (2005) CrossRefADSGoogle Scholar
  14. T.M. Rocha Filho, A. Figueiredo, M.A. Amato, Phys. Rev. Lett. 95, 190601 (2005) MathSciNetCrossRefADSGoogle Scholar
  15. A. Rapisarda, A. Pluchino, Europhysics News 36, 202 (2005) CrossRefADSGoogle Scholar
  16. F. Bouchet, T. Dauxois, Phys. Rev. E 72, 045103(R) (2005) CrossRefADSGoogle Scholar
  17. P.H. Chavanis, Eur. Phys. J. B 52, 47 (2006) CrossRefADSGoogle Scholar
  18. A. Campa, A. Giansanti, D. Mukamel, S. Ruffo, Physica A 365, 120 (2006) CrossRefADSGoogle Scholar
  19. A. Pluchino, A. Rapisarda, Physica A 365, 184 (2006) CrossRefADSGoogle Scholar
  20. L.G. Moyano, C. Anteneodo, Phys. Rev. E 74, 021118 (2006) CrossRefADSMathSciNetGoogle Scholar
  21. F. Baldovin, E. Orlandini, Phys. Rev. Lett. 96, 240602 (2006) CrossRefADSGoogle Scholar
  22. P.H. Chavanis, Statistical Mechanics of Two-dimensional Vortices and Stellar Systems in dauxois, arXiv:[cond-mat/0212223] Google Scholar
  23. P.H. Chavanis, Physica A 361, 55 (2006); P.H. Chavanis, Physica A 361, 81 (2006) MathSciNetCrossRefADSGoogle Scholar
  24. C. Tsallis, J. Stat. Phys. 52, 479 (1988) zbMATHMathSciNetCrossRefADSGoogle Scholar
  25. P.H. Chavanis, Physica A 365, 102 (2006) CrossRefADSGoogle Scholar
  26. A. Antoniazzi, D. Fanelli, J. Barré, P.H. Chavanis, T. Dauxois, S. Ruffo, arXiv:[cond-mat/0603813v2] Google Scholar
  27. D. Lynden-Bell, MNRAS 136, 101 (1967) ADSGoogle Scholar
  28. P.H. Chavanis, J. Sommeria, R. Robert, ApJ 471, 385 (1996) CrossRefADSGoogle Scholar
  29. P.H. Chavanis, Contributions à la mécanique statistique des tourbillons bidimensionnels. Analogie avec la relaxation violente des systèmes stellaires, Ph.D. thesis, ENS Lyon (1996) Google Scholar
  30. P.H. Chavanis, Statistical Mechanics of Violent Relaxation in Stellar Systems, in Proceedings of the Conference on Multiscale Problems in Science and Technology, edited by N. Antonic, C.J. van Duijn, W. Jager, A. Mikelic (Springer, Berlin, 2002) arXiv:[astro-ph/0212205] Google Scholar
  31. P.H. Chavanis, Physica A 359, 177 (2006) MathSciNetCrossRefADSGoogle Scholar
  32. P.H. Chavanis, J. Sommeria, MNRAS 296, 569 (1998) CrossRefADSGoogle Scholar
  33. P.H. Chavanis, Phys. Rev. E 68, 036108 (2003) CrossRefADSGoogle Scholar
  34. J. Binney, S. Tremaine, Galactic Dynamics (Princeton Series in Astrophysics, 1987) Google Scholar
  35. P.H. Chavanis, A&A 401, 15 (2003) zbMATHCrossRefADSGoogle Scholar
  36. S. Tremaine, M. Hénon, D. Lynden-Bell, MNRAS 227, 543 (1986) ADSGoogle Scholar
  37. P.H. Chavanis, C. Sire, Physica A 356, 419 (2005) MathSciNetCrossRefADSGoogle Scholar
  38. P.H. Chavanis, A&A 451, 109 (2006) CrossRefADSzbMATHGoogle Scholar
  39. J. Miller, Phys. Rev. Lett. 65, 2137 (1990) zbMATHMathSciNetCrossRefADSGoogle Scholar
  40. R. Robert, J. Sommeria, JFM 229, 291 (1991) zbMATHADSGoogle Scholar
  41. P.H. Chavanis, A&A 381, 340 (2002) zbMATHCrossRefADSGoogle Scholar
  42. P.H. Chavanis, M. Lemou, Phys. Rev. E 72, 061106 (2005) MathSciNetCrossRefADSGoogle Scholar
  43. P.H. Chavanis, Eur. Phys. J. B 52, 61 (2006) CrossRefADSGoogle Scholar
  44. A. Pluchino, A. Rapisarda, Prog. Theor. Phys. Supp. 162, 18 (2006) ADSGoogle Scholar
  45. A.R. Plastino, A. Plastino, Physica A 222, 347 (1995) MathSciNetCrossRefADSGoogle Scholar
  46. C. Tsallis, D.J. Bukman, Phys. Rev. E 54, R2197 (1996) Google Scholar
  47. P.H. Chavanis, Physica A 332, 89 (2004); P.H. Chavanis, Physica A 340, 57 (2004) MathSciNetCrossRefADSGoogle Scholar
  48. H. Brands, P.H. Chavanis, R. Pasmanter, J. Sommeria, Phys. Fluids 11, 3465 (1999) MathSciNetCrossRefADSzbMATHGoogle Scholar
  49. P.H. Chavanis, J. Sommeria, J. Fluid Mech. 314, 267 (1996) zbMATHCrossRefADSGoogle Scholar
  50. I. Arad, D. Lynden-Bell, MNRAS 361, 385 (2005) CrossRefADSGoogle Scholar
  51. R. Ellis, K. Haven, B. Turkington, Nonlinearity 15, 239 (2002) zbMATHMathSciNetCrossRefADSGoogle Scholar
  52. P.H. Chavanis, Physica D 200, 257 (2005) zbMATHMathSciNetCrossRefADSGoogle Scholar
  53. P.H. Chavanis, Statistical Mechanics of 2D Turbulence with a Prior Vorticity Distribution, in Proceedings of the Workshop on Interdisciplinary Aspects of Turbulence at Ringberg Castle, Tegernsee, Germany (Max-Planck Institut fur Astrophysik, 2005) arXiv:[physics/0601087] Google Scholar
  54. N. Leprovost, B. Dubrulle, P.H. Chavanis, Phys. Rev. E 73, 046308 (2006) MathSciNetCrossRefADSGoogle Scholar
  55. X.P. Huang, C.F. Driscoll, Phys. Rev. Lett. 72, 2187 (1994) CrossRefADSGoogle Scholar
  56. B.M. Boghosian, Phys. Rev. E 53, 4754 (1996) CrossRefADSGoogle Scholar
  57. P.H. Chavanis, MNRAS 300, 981 (1998) ADSGoogle Scholar
  58. B.B. Kadomtsev, O.P. Poguste, Phys. Rev. Lett. 25, 1155 (1970) CrossRefADSGoogle Scholar
  59. W. Braun, K. Hepp, Commun. Math. Phys. 56, 101 (1977) MathSciNetCrossRefADSGoogle Scholar
  60. P.H. Chavanis, Phys. Rev. E 65, 056123 (2002) MathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, Université Paul SabatierToulouse CedexFrance

Personalised recommendations