Advertisement

Pattern formation in reaction-diffusion system in crossed electric and magnetic fields

  • S. S. Riaz
  • S. Banarjee
  • S. Kar
  • D. S. RayEmail author
Statistical and Nonlinear Physics

Abstract.

We consider a reaction-diffusion system in crossed electric and magnetic fields lying on the reaction plane. It is shown that a charge separation along the direction normal to the reaction plane resulting in a diffusional flux may cause a differential flow induced chemical instability and stationary pattern formation on a homogeneous steady state. This pattern is generically different from a Turing pattern modified by the crossed fields. The special role of magnetic field is emphasized. Our theoretical analysis is corroborated by numerical simulation on a reaction-diffusion system in three dimensions.

PACS.

82.40.Ck Pattern formation in reactions with diffusion, flow and heat transfer 47.54.-r Pattern selection; pattern formation 05.45.-a Nonlinear dynamics and chaos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear ChemicalDynamics (Oxford University Press, New York, 1998) Google Scholar
  2. J.D. Murray, Asymptotic Analysis (Springer-Verlag, New York, 1984) Google Scholar
  3. A.M. Turing, Philos. Trans. R. Soc. London 327, 37 (1952) ADSGoogle Scholar
  4. J.R. Bamforth, S. Kalliadasis, J.H. Merkin, S.K. Scott, Phys. Chem. Chem. Phys. 2, 4013 (2000) CrossRefGoogle Scholar
  5. S. Schmidt, P. Ortoleva, J. Chem. Phys. 71, 1010 (1979) CrossRefADSGoogle Scholar
  6. S. Schmidt, P. Ortoleva, J. Chem.Phys. 74, 4488 (1981) CrossRefADSGoogle Scholar
  7. A. Toth, D. Horvath, W.V. Saarloos, J. Chem. Phys. 111, 10964 (1999) CrossRefADSGoogle Scholar
  8. B.Z. Virany, A. Szommer, A. Toth, D. Horvath, Phys. Chem. Chem. Phys. 6, 3396 (2004) CrossRefGoogle Scholar
  9. J. Krempasky, M. Smrcinova, Collect. Czehc. Chem. Commun. 54, 1232 (1989) CrossRefGoogle Scholar
  10. S.S. Riaz, S. Kar, D.S. Ray, Physica D 203, 224 (2005) zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. S.S. Riaz, S. Kar, D.S. Ray, J. Chem. Phys. 121, 5395 (2004) CrossRefADSGoogle Scholar
  12. B. Schmidt, P. De Kepper, S.C. Müller, Phys. Rev. Lett. 90, 118302 (2003) CrossRefADSGoogle Scholar
  13. E. Steiner, T. Ulrich, Chem. Rev. 89, 51 (1989) CrossRefGoogle Scholar
  14. K. Bhattacharyya, M. Chowdhury, Chem. Rev. 93, 507 (1993) CrossRefGoogle Scholar
  15. M. Halder, P.P. Parui, K.R. Gopidas, D.N. Nath, M. Chowdhury, J. Phys. Chem. A 106, 2200 (2002) CrossRefGoogle Scholar
  16. E. Boga, Kadar, G. Peintler, I. Nagypal, Nature 347, 749 (1990) CrossRefADSGoogle Scholar
  17. X He, K. Kustin, I. Nagypal, G. Peintler, Inorg. Chem. 33, 2077 (1994) CrossRefGoogle Scholar
  18. J.D. Lechleiter, D.E. Clapham, Cell 69, 283 (1992) CrossRefGoogle Scholar
  19. I. Lengyel, I.R. Epstein, Science 251, 650 (1991) CrossRefADSGoogle Scholar
  20. V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Phys. Rev. Lett. 64, 2953 (1990) CrossRefADSGoogle Scholar
  21. M. Menzinger, A.B. Rovinsky, in Chemical Waves and Patterns, edited by R. Kapral, K. Showalter (Kluwer, Dordrecht), pp. 365–397 Google Scholar
  22. H. Sevcikova, M. Marek, Physica D 9, 140 (1983) CrossRefADSGoogle Scholar
  23. H. Sevcikova, M. Marek, Physica D 21, 61 (1986) CrossRefADSGoogle Scholar
  24. O. Jensen, V.O. Pannbacker, E. Mosekilde, G. Dewel, P. Borckmans, Phys. Rev. E 50, 736 (1994) CrossRefADSGoogle Scholar
  25. A.F. Munster, F. Hasal, D. Smita, M. Marek, Phys. Rev. E 50, 546 (1994) CrossRefADSGoogle Scholar
  26. A.B. Rovinsky, M Menzinger, Phys. Rev. Lett. 69, 1193 (1992) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Indian Association for the Cultivation of Science, JadavpurKolkataIndia
  2. 2.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations