Advertisement

Better synchronizability predicted by a new coupling method

  • M. Zhao
  • T. ZhouEmail author
  • B.-H. Wang
  • Q. Ou
  • J. Ren
Statistical and Nonlinear Physics

Abstract.

In this paper, inspired by the idea that different nodes should play different roles in network synchronization, we bring forward a coupling method where the coupling strength of each node depends on its neighbors' degrees. Compared with the uniform coupled method and the recently proposed Motter-Zhou-Kurths method, the synchronizability of scale-free networks can be remarkably enhanced by using the present coupling method, and the highest network synchronizability is achieved at β=1 which is similar to a method introduced in [AIP Conf. Proc. 776, 201 (2005)].

PACS.

89.75.Hc Networks and genealogical trees 89.75.-k Complex systems 05.45.Xt Synchronization; coupled oscillators 87.18.Sn Neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) MathSciNetCrossRefADSGoogle Scholar
  2. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002) CrossRefADSGoogle Scholar
  3. M.E.J. Newman, SIAM Rev. 45, 167 (2003) zbMATHMathSciNetCrossRefGoogle Scholar
  4. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006) MathSciNetCrossRefADSGoogle Scholar
  5. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) CrossRefADSGoogle Scholar
  6. A.-L. Barabási, R. Albert, Science 286, 509 (1999) MathSciNetCrossRefGoogle Scholar
  7. L.F. Lago-Fernández, R. Huerta, F. Corbacho, J.A. Sigüenza, Phys. Rev. Lett. 84, 2758 (2000) CrossRefADSGoogle Scholar
  8. P.M. Gade, C.-K. Hu, Phys. Rev. E 62, 6409 (2000) CrossRefADSGoogle Scholar
  9. H. Hong, M.Y. Choi, B.J. Kim, Phys. Rev. E 65, 026139 (2002) CrossRefADSGoogle Scholar
  10. T. Zhou, M. Zhao, B.-H. Wang, Phys. Rev. E 73, 037101 (2006) CrossRefADSGoogle Scholar
  11. T. Nishikawa, A.E. Motter, Y.-C. Lai, F.C. Hoppensteadt, Phys. Rev. Lett. 91, 014101 (2003) CrossRefADSGoogle Scholar
  12. L. Donetti, P.I. Hurtado, M.A. Muñoz, Phys. Rev. Lett. 95, 188701 (2005) CrossRefADSGoogle Scholar
  13. M. Zhao, T. Zhou, B.-H. Wang, G. Yan, H.-J. Yang, W.-J. Bai, Physica A 371, 773 (2006) CrossRefADSGoogle Scholar
  14. B. Wang, H.-W. Tang, T. Zhou, Z.-L. Xu, e-print arXiv: cond-mat/0512079 Google Scholar
  15. A.E. Motter, C. Zhou, J. Kurths, Phys. Rev E 71, 016116 (2005) MathSciNetCrossRefADSGoogle Scholar
  16. A.E. Motter, C. Zhou, J. Kurths, AIP Conf. Proc. 776, 201 (2005) MathSciNetADSGoogle Scholar
  17. A.E. Motter, C. Zhou, J. Kurths, Europhys. Lett. 69, 334 (2005) CrossRefADSGoogle Scholar
  18. M. Zhao, T. Zhou, B.-H. Wang, W.-X. Wang, Phys. Rev. E 72, 057102 (2005) CrossRefADSGoogle Scholar
  19. M. Chavez, D.-U. Hwang, A. Amann, H.G.E. Hentschel, S. Boccaletti, Phys. Rev. Lett. 94, 218701 (2005) CrossRefADSGoogle Scholar
  20. M. Chavez, D.-U. Hwang, A. Amann, S. Boccaletti, Chaos 16, 015106 (2006) MathSciNetCrossRefGoogle Scholar
  21. X. Li, Y.Y. Jin, G. Chen, Physica A 328, 287 (2003) zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. T. Nishikawa, A.E. Motter, Phys. Rev. E 73, 065106 (2006) CrossRefADSGoogle Scholar
  23. L.M. Pecora, T.L. Carrol, Phys. Rev. Lett. 80, 2109 (1998) CrossRefADSGoogle Scholar
  24. M. Barahona, L.M. Pecora, Phys. Rev. Lett. 89, 054101 (2002) CrossRefADSGoogle Scholar
  25. X.F. Wang, G. Chen, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, 187 (2002) CrossRefGoogle Scholar
  26. X.F. Wang, G. Chen, IEEE Trans. Circuits and Systems I 49, 54 (2002) CrossRefGoogle Scholar
  27. P.N. McGraw, M. Menzinger, Phys. Rev. E 72, 015101(R) (2005) MathSciNetCrossRefADSGoogle Scholar
  28. In this extreme case, only the directed edges containing nonzero coupling signals are effective edges, and can do contribution to the synchronizing process Google Scholar
  29. M. di Bernardo, F. Garofalo, F. Sorrentino, Int. J. Bifurca. & Chaos (accepted), e-print arXiv: cond-mat/0506236 Google Scholar
  30. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000) CrossRefADSGoogle Scholar
  31. P.L. Krapivsky, S. Redner, Phys. Rev. E 63, 066123 (2001) CrossRefADSGoogle Scholar
  32. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002) CrossRefADSGoogle Scholar
  33. M.E.J. Newman, Phys. Rev. E 67, 026126 (2003) MathSciNetCrossRefADSGoogle Scholar
  34. G. Yan, T. Zhou, B. Hu, Z.-Q. Fu, B.-H. Wang, Phys. Rev. E 73, 046108 (2006) CrossRefADSGoogle Scholar
  35. C.-Y. Yin, B.-H. Wang, W.-X. Wang, T. Zhou, H.-J. Yang, Phys. Lett. A 351, 220 (2006) CrossRefADSGoogle Scholar
  36. W.-X. Wang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie, T. Zhou, Phys. Rev. E 73, 026111 (2006) CrossRefADSGoogle Scholar
  37. B.-H. Wang, T. Zhou, e-print arXiv: physics/0609031 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.Department of AutomationUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations