Advertisement

Condition numbers and scale free graphs

  • G. Acosta
  • M. Graña
  • J. P. PinascoEmail author
Mathematical Physics

Abstract.

In this work we study the condition number of the least square matrix corresponding to scale free networks. We compute a theoretical lower bound of the condition number which proves that they are ill conditioned. Also, we analyze several matrices from networks generated with Linear Preferential Attachment, Edge Redirection and Attach to Edges models, showing that it is very difficult to compute the power law exponent by the least square method due to the severe lost of accuracy expected from the corresponding condition numbers.

PACS.

02.60.Dc Numerical linear algebra 05.10Ln Monte Carlo methods 89.75.-k Complex systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins Series in Mathematical Sciences, 3rd edn. (The Johns Hopkins University Press, Baltimore and London, 1996) Google Scholar
  2. D.A. Belsley, Conditioning Diagnostics, Collinearity and Weak Data in Regression (John Wiley & Sons, New York, 1991) Google Scholar
  3. S. Chatterjee, A.S. Hadi, B. Price, Regression Analysis by Example, 3rd edn., Wiley Series in Probability and Statistics (John Wiley & Sons, 1991) Google Scholar
  4. G.W. Stewart, Statistical Science 2, 68 (1987) zbMATHMathSciNetGoogle Scholar
  5. D. Achlioptas, A. Clauset, D. Kempe, C. Moore On the Bias of Traceroute Sampling; or, Power-law Degree Distributions in Regular Graphs Proc. STOC (2005) Google Scholar
  6. S.H. Lee, P.-J. Kim, H. Jeong, Phys. Rev. E 73, 016102 (2006) CrossRefADSGoogle Scholar
  7. D.A. Belsley, Multicollinearity: Diagnosing its Presence and Assessing the Potential Damage It Causes Least Squares Estimation, National Bureau of Economic Research Working Paper No. 154 (1976) Google Scholar
  8. M. Faloutsos, P. Faloutsos, C. Faloutsos, Computer Commun. Rev. 29, 251 (1999) CrossRefGoogle Scholar
  9. H. Jeong, B. Tombor, B. Albert, Z.N. Oltvai, A.L. Barabasi, Nature 407, 651 (2000) CrossRefADSGoogle Scholar
  10. M.E.J. Newman, Contemporary Physics 46, 323 (2005) ADSGoogle Scholar
  11. R. Albert, A-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) MathSciNetCrossRefADSGoogle Scholar
  12. A-L. Barabási, R. Albert, Science, 286, 509 (1999) Google Scholar
  13. P.L. Krapivsky, S. Redner, Phys. Rev. E 63, 066123 (2001) CrossRefADSGoogle Scholar
  14. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. E 63, 062101 (2001) CrossRefADSGoogle Scholar
  15. R. Khanin, E. Wit, J. Comput. Biology 13, 810-8 (2006) CrossRefGoogle Scholar
  16. M.S. Handcock, J.H. Jones, Nature 423, 605 (2003) CrossRefADSGoogle Scholar
  17. D.B. Stouffer, R.D. Malmgren, L.A.N. Amaral, Nature 435, 207 (2005), arXiv:physics/0510216 CrossRefGoogle Scholar
  18. T. Petermann, P. De Los Rios, Eur. Phys. J. B 38, 201 (2004) CrossRefADSGoogle Scholar
  19. Q. Chen, H. Chang, R. Govindan, S. Jamin, S.J. Shenker, W. Willinger, The Origin of Power Laws in Internet Topologies Revisited, Proc. of IEEE Infocom (2002) Google Scholar
  20. A. Clauset, C. Moore, Phys. Rev. Lett. 94, 18701 (2005) CrossRefADSGoogle Scholar
  21. L. Dall'Asta, I. Alvarez-Hamelin, A. Barrat, A. Vazquez, A. Vespignani, Phys. Rev. E 71, 036135 (2005) CrossRefADSGoogle Scholar
  22. A. Lakhina, J. Byers, M. Crovella, P. Xie Sampling Biases in IP Topology Measurements, Proc. of IEEE INFOCOM '03 (2003) Google Scholar
  23. M.L. Goldstein, S.A. Morris, G.G. Yen, Eur. Phys. J. B 41, 255 (2004) CrossRefADSGoogle Scholar
  24. P.L. Krapivsky, S. Redner, J. Phys. A 35, 9517 (2002) zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Instituto de CienciasBuenos AiresArgentina
  2. 2.Depto de Matematicas, FCEyN, Universidad de Buenos Aires, Ciudad UniversitariaCiudad de Buenos AiresArgentina

Personalised recommendations