Advertisement

A unified framework for the pareto law and Matthew effect using scale-free networks

  • M.-B. HuEmail author
  • W.-X. Wang
  • R. Jiang
  • Q.-S. Wu
  • B.-H. Wang
  • Y.-H. Wu
Interdisciplinary Physics

Abstract.

We investigate the accumulated wealth distribution by adopting evolutionary games taking place on scale-free networks. The system self-organizes to a critical Pareto distribution (1897) of wealth P(m)∼m-(v+1) with 1.6 < v <2.0 (which is in agreement with that of U.S. or Japan). Particularly, the agent's personal wealth is proportional to its number of contacts (connectivity), and this leads to the phenomenon that the rich gets richer and the poor gets relatively poorer, which is consistent with the Matthew Effect present in society, economy, science and so on. Though our model is simple, it provides a good representation of cooperation and profit accumulation behavior in economy, and it combines the network theory with econophysics.

PACS.

87.23.Ge Dynamics of social systems 89.75.Hc Networks and genealogical trees 05.10.-a Computational methods in statistical physics and nonlinear dynamics 89.75.-k Complex systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Pareto, Le Cours d'Économie Politique (Macmillan, Lausanne, Paris, 1987) Google Scholar
  2. A.A. Dragulescu, V.M. Yakovenko, Physica A 299, 213 (2001) zbMATHCrossRefADSGoogle Scholar
  3. S. Moss de Oliveira, P.M.C. de Oliveira, D. Stauer, Evolution, Money, War and Computers, edited by B.G. Tuebner (Stuttgart, Leipzig, 1999) Google Scholar
  4. Y. Fujiwara, W. Souma, H. Aoyama, T. Kaizoji, M. Aoki, Physica A 321, 598 (2003) zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. M. Levy, S. Solomon, Physica A 242, 90 (1997) CrossRefADSGoogle Scholar
  6. Econophysics of Wealth Distributions, edited by A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti (Springer-Verlag, Milan, 2005) Google Scholar
  7. A. Chakrabarti, B.K. Chakrabarti, Eur. Phys. J. B 17, 167 (2000) CrossRefADSGoogle Scholar
  8. A. Dragulascu, V.M. Yakovenko, Eur. Phys. J. B 17, 723 (2000) CrossRefADSGoogle Scholar
  9. R. Fischer, D. Braun, Physica A 321, 605 (2003) zbMATHMathSciNetCrossRefADSGoogle Scholar
  10. Y. Wang, N. Ding, L. Zhang, Physica A 324, 665 (2003) zbMATHMathSciNetADSGoogle Scholar
  11. A. Chatterjee, B.K. Chakrabarti, S.S. Manna, Physica A 335, 155 (2004) MathSciNetCrossRefADSGoogle Scholar
  12. N. Xi, N. Ding, Y. Wang, Physica A 357, 543 (2005) CrossRefADSGoogle Scholar
  13. J.P. Bouchaud, M. Mézard, Physica A 282, 536 (2000) CrossRefADSGoogle Scholar
  14. F. Slanina, Phys. Rev. E 69(4), 046102 (2004) CrossRefGoogle Scholar
  15. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) CrossRefADSGoogle Scholar
  16. A.L. Barabási, R. Albert, Science 286, 509 (1999) MathSciNetCrossRefGoogle Scholar
  17. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002) MathSciNetCrossRefADSGoogle Scholar
  18. F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005); F.C. Santos, J.F. Rodrigues, J.M. Pacheco, Proc. Roy. Soc. London B 273, 51 (2006) CrossRefADSGoogle Scholar
  19. R. Albert, A.L. Barabási, Phys. Rev. Lett. 85, 5234 (2000); L.A.N. Amaral, A. Scala, M. Barthélémy, H.E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 97, 11149 (2000) CrossRefADSGoogle Scholar
  20. A.L. Barabási, H. Jeong, E. Ravasz, Z. Néda, A. Schubert, T. Vicsek, preprint arXiv:cond-mat/0104162 (2001) Google Scholar
  21. F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, Y. Aberg, Nature (London) 411, 907 (2001) CrossRefADSGoogle Scholar
  22. H. Gintis, Game Theory Evolving (Princeton University, Princeton, NJ, 2000) Google Scholar
  23. A.M. Colman, Game Theory and its Applications in the Social and Biological Sciences (Butterworth-Heinemann, Oxford, 1995) Google Scholar
  24. M. Nowak, K. Sigmund, Nature (London) 355, 250 (1992) CrossRefADSGoogle Scholar
  25. M. Nowak, K. Sigmund, Nature (London) 364, 1 (1993) CrossRefGoogle Scholar
  26. M. Nowak, R.M. May, Nature (London) 359, 826 (1992); Int. J. Bifurcation Chaos Appl. Sci. Eng. 3, 35 (1993) CrossRefADSGoogle Scholar
  27. C. Hauert, M. Doebeli, Nature 428, 643 (2004) CrossRefADSGoogle Scholar
  28. J.M. McNamara, Z. Barta, A.I. Houston, Nature 428, 745 (2004) CrossRefADSGoogle Scholar
  29. R.K. Merton, Science 159, 56 (1968); ISIS 79, 606 (1988) CrossRefADSGoogle Scholar
  30. M. Bonitz, E. Bruckner, A. Scharnhorst, Scientometrics 40, 407 (1997); M. Bonitz, Scientometrics 64, 375 (2005) CrossRefGoogle Scholar
  31. D.F. Brewer, Physics Today 44, 154 (1991); Google Scholar
  32. R.H. Wade, Inter. J. Health Services 35, 631 (2005) CrossRefGoogle Scholar
  33. G. Szabó, C. Töke, Phys. Rev. E 58, 69 (1998) CrossRefADSGoogle Scholar
  34. G. Szabó, C. Hauert, Phys. Rev. Lett. 89, 118101 (2002) CrossRefADSGoogle Scholar
  35. G. Szabó, J. Vukov, Phys. Rev. E 69, 036107 (2004) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • M.-B. Hu
    • 1
    Email author
  • W.-X. Wang
    • 2
  • R. Jiang
    • 1
  • Q.-S. Wu
    • 1
  • B.-H. Wang
    • 2
  • Y.-H. Wu
    • 3
  1. 1.School of Engineering Science, University of Science and Technology of ChinaHefeiP.R. China
  2. 2.Nonlinear Science Center and Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiP.R. China
  3. 3.Department of Mathematics and StatisticsCurtin University of TechnologyPerthAustralia

Personalised recommendations