Advertisement

Network robustness to targeted attacks. The interplay of expansibility and degree distribution

  • E. EstradaEmail author
Interdisciplinary Physics

Abstract.

We study the property of certain complex networks of being both sparse and highly connected, which is known as “good expansion” (GE). A network has GE properties if every subset S of nodes (up to 50% of the nodes) has a neighborhood that is larger than some “expansion factor” φ multiplied by the number of nodes in S. Using a graph spectral method we introduce here a new parameter measuring the good expansion character of a network. By means of this parameter we are able to classify 51 real-world complex networks — technological, biological, informational, biological and social — as GENs or non-GENs. Combining GE properties and node degree distribution (DD) we classify these complex networks in four different groups, which have different resilience to intentional attacks against their nodes. The simultaneous existence of GE properties and uniform degree distribution contribute significantly to the robustness in complex networks. These features appear solely in 14% of the 51 real-world networks studied here. At the other extreme we find that ∼40% of all networks are very vulnerable to targeted attacks. They lack GE properties, display skewed DD — exponential or power-law — and their topologies are changed more dramatically by targeted attacks directed at bottlenecks than by the removal of network hubs.

PACS.

89.75.Fb Structures and organization in complex systems 89.75.Da Systems obeying scaling laws 89.20.-a Interdisciplinary applications of physics 89.75.Hc Networks and genealogical trees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.H. Strogatz, Nature 410, 268 (2001) CrossRefADSGoogle Scholar
  2. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) CrossRefADSMathSciNetGoogle Scholar
  3. M.E.J. Newman, SIAM Rev. 45, 167 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  4. L.A.N. Amaral, J.M. Ottino, Eur. Phys. J. B 38, 147 (2004) CrossRefADSGoogle Scholar
  5. Network Science (National Research Council, National Academy Press, Washington DC, 2005) Google Scholar
  6. R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000) CrossRefADSGoogle Scholar
  7. D. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000) CrossRefADSGoogle Scholar
  8. G. Paul, T. Tanizawa, S. Havlin, H.E. Stanley, Euro. Phys. J. B 38, 187 (2004) CrossRefADSMathSciNetGoogle Scholar
  9. T. Tanizawa, G. Paul, R. Cohen et al., Phys. Rev. E 71, 047101 (2005) CrossRefADSGoogle Scholar
  10. J. Balthrop, S. Forrest, M.J.E. Newman, M.M. Williamson, Science 304, 527 (2004) CrossRefGoogle Scholar
  11. A.-L. Barabási, Z.N. Oltvai, Nature Rev. Genet. 5, 101 (2004) CrossRefGoogle Scholar
  12. F. Liljeros, C.R. Edling, L.A.N. Amaral et al., Nature 411, 907 (2001) CrossRefADSGoogle Scholar
  13. J.A. Dunne, R.J. Williams, N.D. Martinez, Ecology Lett. 5, 558 (2002) CrossRefGoogle Scholar
  14. H. Jeong, S.P. Mason, A.-L. Barabási, Z.N. Oltvai, Nature 411, 41 (2001) CrossRefADSMathSciNetGoogle Scholar
  15. E. Estrada, Proteomics 6, 31 (2006) CrossRefGoogle Scholar
  16. R. Pastor-Satorrás, A. Vespignani, Phys. Rev. E. 65, 036104 (2002) CrossRefADSGoogle Scholar
  17. P. Holme, Europhys. Lett. 68, 908 (2004) CrossRefADSGoogle Scholar
  18. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000) CrossRefADSGoogle Scholar
  19. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001) CrossRefADSGoogle Scholar
  20. A. Valente, A. Srakar, H.A. Stone, Phys. Rev. Lett. 92, 11872 (2004) CrossRefGoogle Scholar
  21. A.-L. Barabási, R. Albert, Science 286, 509 (1999) CrossRefMathSciNetGoogle Scholar
  22. S.N. Dorogovtsev, J.F.F. Mendes, Europhys. Lett. 52, 33 (2000) CrossRefADSGoogle Scholar
  23. P. Sarnak, Notices of the AMS 51, 762 (2004) zbMATHMathSciNetGoogle Scholar
  24. C. Gkantsidis, M. Mihail, A. Saberi, Perform. Eval. 63, 241 (2006) CrossRefGoogle Scholar
  25. B. Mohar, J. Comb. Theor. B 47, 274 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  26. F.R. Chung, Spectral Graph Theory (American Mathematical Society Book Series, 1997) Google Scholar
  27. D. Cvetkovi ae , P. Rowlinson, S. Simi ae , Eigenspaces of Graphs (Cambridge University Press, Cambridge, 1997) Google Scholar
  28. E. Estrada, J.A. Rodríguez-Velázquez, Phys. Rev. E. 71, 056103 (2005) CrossRefADSMathSciNetGoogle Scholar
  29. E. Estrada, J.A. Rodríguez-Velázquez, Phys. Rev. E. 72, 055510, (2005) CrossRefMathSciNetGoogle Scholar
  30. E. Estrada, Europhys. Lett. 73, 649 (2006) CrossRefADSMathSciNetGoogle Scholar
  31. J.A. Dunne, R.J. Williams, N.D. Martinez, Ecology Lett. 5, 558 (2002) CrossRefGoogle Scholar
  32. J.A. Dunne, R.J. Williams, N.D. Martinez, Proc. Natl. Acad. Sci. USA 99, 12917 (2002) CrossRefADSGoogle Scholar
  33. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002) zbMATHCrossRefADSMathSciNetGoogle Scholar
  34. P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Phys. Rev. E 65, 056109 (2002) CrossRefADSGoogle Scholar
  35. L.C. Freeman, Sociometry 40, 35 (1977) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Complex Systems Research Group, X-Rays Unit, RIAIDT, Edifico CACTUS, University of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations