Advertisement

The effect of spatial structure in adaptive evolution

  • L. Perfeito
  • I. Gordo
  • P. R.A. Campos
Interdisciplinary Physics

Abstract.

We study the dynamics of adaptation in a spatially structured population. The model assumes local competition for replication, where each organism interacts only with its nearest neighbors and is inspired by experimental methods that can be used to study the process of adaptive evolution in microbes. In such experiments microbial populations are grown on petri dishes and allowed to adapt by serial passage. We compare the rate of adaptation in a structured population where the structure is maintained intact to those where movement of individuals can occur. We observe that the rate of adaptive evolution is higher and the mean effect of fixed beneficial mutations is lower in intact structures than in structures with mixing.

PACS.

87.23.-n Ecology and evolution 87.23.Cc Population dynamics and ecological pattern formation 87.23.-Kg Dynamics of evolution 

References

  1. J.B.S. Haldane, Proc. Camb. Phil. Soc. 26, 220 (1927) CrossRefGoogle Scholar
  2. W.G. Hill, A. Robertson, Genet. Res. 8, 269 (1966) Google Scholar
  3. B. Charlesworth, M. Morgan, D. Charlesworth, Genetics 134, 1289 (1993) Google Scholar
  4. H.A. Orr, Genetics 155, 961 (2000) Google Scholar
  5. D. Bachtrog, I. Gordo, Evolution Int. J. Org. Evolution 58, 1403 (2004) Google Scholar
  6. C.O. Wilke, Genetics 167, 2045 (2004) CrossRefGoogle Scholar
  7. N.H. Barton, Genet. Res. 64, 199 (1994) Google Scholar
  8. N.H. Barton, Genetics 140, 821 (1995) Google Scholar
  9. P.J. Gerrish, R.E. Lenski, Genetica 102, 127 (1998) CrossRefGoogle Scholar
  10. R. Miralles, P.J. Gerrish, A. Moya, S.F. Elena, Science 10, 285 (1999) Google Scholar
  11. J.A.M. deVisser, C.W. Zeyl, P.J. Gerrish, J.L. Blanchard, R.E. Lenski, Science 15, 283 (1999) Google Scholar
  12. V.M. de Oliveira, P.R.A. Campos, Physica A 337, 546 (2004) CrossRefADSGoogle Scholar
  13. S. Wright, Genetics 16, 97 (1931) Google Scholar
  14. T. Maruyama, Genet. Res. 15, 221 (1970) MathSciNetCrossRefGoogle Scholar
  15. T. Maruyama, Theor. Popul. Biol. 5, 148 (1974) CrossRefGoogle Scholar
  16. M. Slatkin, Evolution Int. J. Org. Evolution 35, 477488 (1981) Google Scholar
  17. T. Nagylaki, J. Math. Biol. 9, 101 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  18. T. Nagylaki, J. Theor. Biol. 99, 159172 (1982) CrossRefMathSciNetGoogle Scholar
  19. N. Barton, Genet. Res. 62, 149158 (1993) Google Scholar
  20. M.C. Whitlock, Genetics 160, 11911202 (2002) Google Scholar
  21. D. Rose, F. Rousset, Genetics 165, 2153 (2003) Google Scholar
  22. I. Gordo, P. Campos, Genetica (2006) (to be published) Google Scholar
  23. A.R. Rice, M.A. Hamilton, A.K. Camper, Microbial Ecology 45(2), 163 (2003) CrossRefGoogle Scholar
  24. J.W. Costerton, P.S. Stewart, E.P. Greenberg, Science 284, 1318 (1999) CrossRefADSGoogle Scholar
  25. A. Buckling, R. Kassen, G. Bell, P.B. Rainey, Nature 408, 961 (2000) CrossRefADSGoogle Scholar
  26. F. Dionisio, I.C. Conceicao, A.C.R. Marques, L. Fernandes, I. Gordo, Biol. Lett. 1, 250 (2005) CrossRefGoogle Scholar
  27. P.B. Rainey, M. Travisano, Nature 394, 69 (1998) CrossRefADSGoogle Scholar
  28. J.H. Gillespie, The Causes of Molecular Evolution (Oxford University Press, 1991) Google Scholar
  29. H.A. Orr, Genetics 163, 1519 (2003) Google Scholar
  30. D.E. Rozen, J.A.G.M. de Visser, P.J. Gerrish, Curr. Biol. 12, 1040 (2002) CrossRefGoogle Scholar
  31. H.A. Orr, J. Theor. Biol. 238, 279 (2006) MathSciNetCrossRefGoogle Scholar
  32. T.T. Kybota, M. Lynch, Nature 381, 694 Google Scholar
  33. M. Imhof, C. Schlotterer, Proc. Natl. Acad. Sci. USA 98, 1113 (2001) CrossRefADSGoogle Scholar
  34. W.J. Ewens, Mathematical Population Genetics, 2nd edn. (Springer-Verlag, New York, 2004) Google Scholar
  35. A. Rosas, I. Gordo, P.R.A. Campos, Phys. Rev. E 72, 012901 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Instituto Gulbenkian de CiênciaOeirasPortugal
  2. 2.Departamento de Física e MatemáticaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations