Advertisement

Pressure dependence of the Shubnikov-de Haas oscillation spectrum of \(\beta''\)-(BEDT-TTF)4(NH4)[ Cr(C2 O4)3] .DMF

  • D. Vignolles
  • V. N. Laukhin
  • A. AudouardEmail author
  • M. Nardone
  • T. G. Prokhorova
  • E. B. Yagubskii
  • E. Canadell
Solid and Condensed State Physics

Abstract.

The Shubnikov-de Haas (SdH) oscillation spectra of the \(\beta''\)-(BEDT-TTF)4(NH4)[ Cr(C2O4)3] .DMF organic metal have been studied in pulsed magnetic fields of up to either 36 T at ambient pressure or 50 T under hydrostatic pressures of up to 1 GPa. The ambient pressure SdH oscillation spectra can be accounted for by up to six fundamental frequencies which points to a rather complex Fermi surface (FS). A noticeable pressure-induced modification of the FS topology is evidenced since the number of frequencies observed in the spectra progressively decreases as the pressure increases. Above 0.8 GPa, only three compensated orbits are observed, as it is the case for several other isostructural salts of the same family at ambient pressure. Contrary to other organic metals, of which the FS can be regarded as a network of orbits, no frequency combinations are observed for the studied salt, likely due to high magnetic breakdown gap values or (and) high disorder level evidenced by Dingle temperatures as large as ≃7 K.

PACS.

71.18.+y Fermi surface: calculations and measurements; effective mass, g factor 71.20.Rv Polymers and organic compounds 72.20.My Galvanomagnetic and other magnetotransport effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Coronado, P. Day, Chem. Rev. 104, 5419 (2004) CrossRefGoogle Scholar
  2. A.W. Graham, M. Kurmoo, P. Day, J. Chem. Soc., Chem. Commun. 2061 (1995) Google Scholar
  3. L. Martin, S.S. Turner, P. Day, F.E. Mabbs, E.J.L. McInnes, Chem. Commun. 1367 (1997) Google Scholar
  4. S. Rashid, S.S. Turner, P. Day, J.A.K. Howard, P. Guionneau, E.J.L. McInnes, F.E. Mabbs, J.H. Clark, S. Firth, T. Biggs, J. Mater. Chem. 11, 2095 (2001) CrossRefGoogle Scholar
  5. E. Coronado, J.R. Galán-Mascarós, C.J. Gómez-García, V. Laukhin, Nature 408, 447 (2000) CrossRefADSGoogle Scholar
  6. M. Kurmoo, A.W. Graham, P. Day, S.J. Coles, M.B. Hursthouse, J.L. Caulfield, J. Singleton, F.L. Pratt, W. Hayes, L. Ducasse, P. Guionneau, J. Am. Chem. Soc. 117, 12209 (1995) CrossRefGoogle Scholar
  7. L. Martin, S.S. Turner, P. Day, P. Guionneau, J.A.K. Howard, D.E. Hibbs, M.E. Light, M.B. Hursthouse, M. Uruichi, K. Yakushi, Inorg. Chem. 40, 1363 (2001) CrossRefGoogle Scholar
  8. T.G. Prokhorova, S.S. Khasanov, L.V. Zorina, L.I. Buravov, V.A. Tkacheva, A.A. Baskakov, R.B. Morgunov, M. Gener, E. Canadell, R.P. Shibaeva, E.B. Yagubskii, Adv. Funct. Mater. 13, 403 (2003) CrossRefGoogle Scholar
  9. A. Bangura, A. Coldea, A. Ardavan, J. Singleton, A. Akutsu-Sato, H. Akutsu, P. Day, J. Phys. IV France 114, 285 (2004) CrossRefGoogle Scholar
  10. A. Audouard, V.N. Laukhin, L. Brossard, T.G. Prokhorova, E.B. Yagubskii, E. Canadell, Phys. Rev. B 69, 144523 (2004) CrossRefADSGoogle Scholar
  11. A. Coldea, A. Bangura, J. Singleton, A. Ardavan, A. Akutsu-Sato, H. Akutsu, S.S. Turner, P. Day, Phys. Rev. B 69, 085112 (2004) CrossRefADSGoogle Scholar
  12. A. Bangura, A. Coldea, J. Singleton, A. Ardavan, A. Akutsu-Sato, H. Akutsu, S.S. Turner, P. Day, Phys. Rev. B 72, 14543 (2005) CrossRefADSGoogle Scholar
  13. A.S. Alexandrov, A.M. Bratkovsky, Phys. Rev. Lett. 76, 1308 (1996); A.S. Alexandrov, A.M. Bratkovsky, Phys. Lett. A 234, 53 (1997); A.S. Alexandrov, A.M. Bratkovsky, Phys. Rev. B 63, 033105 (2001); T. Champel, Phys. Rev. B 65, 153403 (2002); K. Kishigi, Y. Hasegawa, Phys. Rev. B 65, 205405 (2002); J.Y. Fortin, E. Perez, A. Audouard, Phys. Rev. B 71, 155101 (2005) CrossRefADSGoogle Scholar
  14. A.B. Pippard, Proc. Roy. Soc. (London) A 270, 1 (1962); P.S. Sandhu, J.H. Kim, J.S. Brooks, Phys. Rev. B 56, 11566 (1997); J.Y. Fortin, T. Ziman, Phys. Rev. Lett. 80, 3117 (1998); V.M. Gvozdikov, Yu.V. Pershin, E. Steep, A.G.M. Jansen, P. Wyder, Phys. Rev. B 65, 165102 (2002) zbMATHADSCrossRefGoogle Scholar
  15. H. Akutsu, A Akutsu-Sato, S.S. Turner, D. Le Pevelen, P. Day, V.N. Laukhin, A.-K. Klehe, J. Singleton, D.A. Tocher, M.R. Probert, J.A.K. Howard, J. Am. Chem. Soc. 124, 12430 (2002) CrossRefGoogle Scholar
  16. S.S. Turner, P. Day, K.M. Abdul Malik, M. Hursthouse, S. Teat, E. MacLean, L. Martin, S. French, Inorg. Chem. 38, 3543 (1999) CrossRefGoogle Scholar
  17. M. Nardone, A. Audouard, D. Vignolles, L. Brossard, Cryogenics 41, 175 (2001) CrossRefADSGoogle Scholar
  18. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984) Google Scholar
  19. J.S. Brooks, X. Chen, S.J. Klepper, S. Valfells, G.J. Athas, Y. Tanaka, T. Kinoshita, N. Kinoshita, M. Tokumoto, H. Anzai, C.C. Agosta, Phys. Rev. B 52, (1995) 14457 Google Scholar
  20. A. Audouard, P. Auban-Senzier, V.N. Laukhin, L. Brossard, D. Jérome, N.D. Kushch, Europhys. Lett. 34, 599 (1996) CrossRefADSGoogle Scholar
  21. J. Hagel, J. Wosnitza, C. Pfleiderer, J.A. Schlueter, J. Mohtasham, G.L. Gard, Phys. Rev. B 68, 104504 (2003) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • D. Vignolles
    • 1
  • V. N. Laukhin
    • 2
    • 3
  • A. Audouard
    • 1
    Email author
  • M. Nardone
    • 1
  • T. G. Prokhorova
    • 4
  • E. B. Yagubskii
    • 4
  • E. Canadell
    • 3
  1. 1.Laboratoire National des Champs Magnétiques Pulsés (UMR 5147: Unité Mixte de Recherche CNRS - Université Paul SabatierToulouseFrance
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.Institut de Ciència de Materials de Barcelona (ICMAB - CSIC)CatalunyaSpain
  4. 4.Institute of Problems of Chemical Physics, Russian Academy of SciencesMDRussia

Personalised recommendations