Advertisement

Nonlinear excitations and electric transport in dissipative Morse-Toda lattices

  • A. P. ChetverikovEmail author
  • W. Ebeling
  • M. G. Velarde
Statistical and Nonlinear Physics

Abstract.

We investigate the onset and maintenance of nonlinear soliton-like excitations in chains of atoms with Morse interactions at rather high densities, where the exponential repulsion dominates. First we discuss the atomic interactions and approximate the Morse potential by an effective Toda potential with adapted density-dependent parameters. Then we study several mechanisms to generate and stabilize the soliton-like excitations: (i) External forcing: we shake the masses periodically, mimicking a piezoelectric-like excitation, and delay subsequent damping by thermal excitation; (ii) heating, quenching and active friction: we heat up the system to a relatively high temperature Gaussian distribution, then quench to a low temperature, and subsequently stabilize by active friction. Finally, we assume that the atoms in the chain are ionized with free electrons able to move along the lattice. We show that the nonlinear soliton-like excitations running on the chain interact with the electrons. They influence their motion in the presence of an external field creating dynamic bound states (“solectrons”, etc.). We show that these bound states can move very fast and create extra current. The soliton-induced contribution to the current is constant, field-independent for a significant range of values when approaching the zero-field value.

PACS.

05.70.Fh Phase transitions: general studies 05.40.Jc Brownian motion 05.70.Ln. Nonequilibrium and irreversible thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Dunkel, W. Ebeling, U. Erdmann, Eur. Phys. J. B 24, 511 (2001) CrossRefADSGoogle Scholar
  2. J. Dunkel, W. Ebeling, U. Erdmann, V. Makarov, Int. J. Bifurcation Chaos 12, 2359 (2002) zbMATHMathSciNetCrossRefGoogle Scholar
  3. A.P. Chetverikov, J. Dunkel, Eur. Phys. J. B 35, 239 (2003) CrossRefADSGoogle Scholar
  4. A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 44, 509 (2005) CrossRefADSGoogle Scholar
  5. M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J. Bifurcation Chaos 15, 245 (2005) zbMATHMathSciNetCrossRefGoogle Scholar
  6. A.P. Chetverikov, W. Ebeling, M.G. Velarde, Contr. Plasma Phys. 45, 275 (2005) CrossRefGoogle Scholar
  7. A.P. Chetverikov, W. Ebeling, M.G. Velarde, Int. J. Bifurcation Chaos 16, in press (2006) Google Scholar
  8. M.G. Velarde, W. Ebeling, D. Hennig, C. Neissner, Int. J. Bifurcation Chaos 16, in press (2006) Google Scholar
  9. D. Hennig, C. Neissner, M.G. Velarde, W. Ebeling, Phys. Rev. B 73, 024306 (2006) CrossRefADSGoogle Scholar
  10. A.S. Davydov, Solitons in Molecular Systems, 2nd edn. (Reidel, Dordrecht, 1991) Google Scholar
  11. A.C. Scott, Phys. Rep. 217, 1 (1992) CrossRefADSGoogle Scholar
  12. D. Hennig, J.F.R. Archilla, J. Agarwal, Physica D 180, 256 (2003) zbMATHMathSciNetADSGoogle Scholar
  13. D. Hennig, E.B. Starikov, J.F.R. Archilla, F. Palmero, J. Biol. Physics 30, 227 (2004) CrossRefGoogle Scholar
  14. Physics in One Dimension, edited by J. Bernasconi, T. Schneider (Springer-Verlag, Berlin, 1981) Google Scholar
  15. The Many-Body Problem. An Encyclopedia of Exactly Solved Models in One Dimension, edited by D.C. Mattis (World Scientific, Singapore, 1993) Google Scholar
  16. M. Toda, Nonlinear Waves and Solitons (Kluwer, Dordrecht, 1983) Google Scholar
  17. F.G. Mertens, B. Büttner, Mod. Problems Cond. Matter Phys. 17, 723 (1986) Google Scholar
  18. A.C. Scott, Nonlinear Science. Emergence & Dynamics of Coherent Structures, 2nd edn. (Oxford University Press, Oxford, 2003) Google Scholar
  19. P. Morse, Phys. Rev. 34, 57 (1929) zbMATHCrossRefADSGoogle Scholar
  20. Ph. Choquard, The Anharmonic Crystal (Benjamin, New York, 1967) Google Scholar
  21. R.S. Berry, B.M. Smirnov, Phys. Rev. B 71, 144105 (2005) CrossRefADSGoogle Scholar
  22. M. Ross, F.H. Ree, J. Chem. Phys. 73, 6146 (1980) CrossRefADSGoogle Scholar
  23. M. Jenssen, W. Ebeling, Physica D 141, 117 (2000) zbMATHMathSciNetCrossRefADSGoogle Scholar
  24. W. Ebeling, A. Chetverikov, M. Jenssen, Ukrain J. Phys. 45, 479 (2000) Google Scholar
  25. N. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehardt & Winston, Philadelphia, 1976) Google Scholar
  26. N.N. Nikitin, V.D. Razevich, J. Comput. Math & Meth. Phys. 18, 108 (1978) MathSciNetGoogle Scholar
  27. V.I. Nekorkin, M.G. Velarde, Synergetic Phenomena in Active Lattices, Patterns, Waves, Solitons, Chaos (Springer-Verlag, Berlin, 2002) Google Scholar
  28. C.I. Christov, M.G. Velarde, Physica D 86, 323 (1995) zbMATHMathSciNetCrossRefGoogle Scholar
  29. I.L. Kliakhandler, A.V. Porubov, M.G. Velarde, Phys. Rev. E 62, 4959 (2000) CrossRefADSGoogle Scholar
  30. Nonlinear Excitations in Biomolecules, edited by M. Peyrard (Springer, Berlin, 1995) Google Scholar
  31. M. Toda, N. Saitoh, J. Phys. Soc. Jpn 52, 3703 (1983) CrossRefGoogle Scholar
  32. V. Makarov, W. Ebeling, M.G. Velarde, Int. J. Bifurcation Chaos 10, 1075 (2000) CrossRefGoogle Scholar
  33. V. Makarov, E. del Rio, W. Ebeling, M.G. Velarde, Phys. Rev. E 64, 036601 (2001) CrossRefADSGoogle Scholar
  34. E. del Rio, V.A. Makarov, M.G. Velarde, W. Ebeling, Phys. Rev. E 67, 056208 (2003) CrossRefADSGoogle Scholar
  35. U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B 15, 105 (2000) CrossRefADSGoogle Scholar
  36. J.W. Strutt [Lord Rayleigh], Phil. Mag. 15, 229 (1883) Google Scholar
  37. J.W. Strutt [Lord Rayleigh], The Theory of Sound (Dover reprint, New York, 1941), Vol. I, Sect. 68a Google Scholar
  38. B. Van der Pol, Phil. Mag 2 (Ser. 7), ibidem, 3 (Ser. 7), 65 (1927) Google Scholar
  39. V.A. Makarov, M.G. Velarde, A.P. Chetverikov, W. Ebeling, Phys. Rev. E, in press (2006) Google Scholar
  40. T. Pohl, U. Feudel, W. Ebeling, Phys. Rev. E 65, 046228 (2002) CrossRefADSGoogle Scholar
  41. W. Ebeling, V.E. Fortov, Yu.L. Klimontovich, N.P. Kovalenko, W.D. Kraeft, Yu.E. Krasny, D. Kremp, P. Kulik, V.A. Riabii, G. Röpke, E. Rozanov, M. Schlanges, Transport Properties of Dense Plasmas (Birkhäuser, Boston, 1984) Google Scholar
  42. V. Heine, M.L. Cohen, D. Weaire, The Pseudopotential Concept (Academic Press, New York, 1970) Google Scholar
  43. Y.L. Klimontovich, Statistical Physics of Open Systems (Kluwer, Dordrecht, 1995) Google Scholar
  44. A.V. Zolotaryuk, St. Pnevmaticos, A.V. Savin, Phys. Rev. Lett. 67, 707 (1991) CrossRefADSGoogle Scholar
  45. D. Hennig, Phys. Rev. E 61, 4550 (2000) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • A. P. Chetverikov
    • 1
    • 2
    Email author
  • W. Ebeling
    • 1
    • 3
  • M. G. Velarde
    • 1
  1. 1.Instituto Pluridisciplinar, Universidad ComplutenseMadridSpain
  2. 2.Faculty of Physics, Saratov State UniversitySaratovRussia
  3. 3.Institut für Physik, Humboldt-Universität BerlinBerlinGermany

Personalised recommendations