Breather trapping and breather transmission in a DNA model with an interface

  • A. Alvarez
  • F. R. RomeroEmail author
  • J. F.R. Archilla
  • J. Cuevas
  • P. V. Larsen
Statistical Physics and Biological Information


We study the dynamics of moving discrete breathers in an interfaced piecewise DNA molecule. This is a DNA chain in which all the base pairs are identical and there exists an interface such that the base pairs dipole moments at each side are oriented in opposite directions. The Hamiltonian of the Peyrard-Bishop model is augmented with a term that includes the dipole-dipole coupling between base pairs. Numerical simulations show the existence of two dynamical regimes. If the translational kinetic energy of a moving breather launched towards the interface is below a critical value, it is trapped in a region around the interface collecting vibrational energy. For an energy larger than the critical value, the breather is transmitted and continues travelling along the double strand with lower velocity. Reflection phenomena never occur. The same study has been carried out when a single dipole is oriented in opposite direction to the other ones. When moving breathers collide with the single inverted dipole, the same effects appear. These results emphasize the importance of this simple type of local inhomogeneity as it creates a mechanism for the trapping of energy. Finally, the simulations show that, under favorable conditions, several launched moving breathers can be trapped successively at the interface region producing an accumulation of vibrational energy. Moreover, an additional colliding moving breather can produce a saturation of energy and a moving breather with all the accumulated energy is transmitted to the chain.


63.20.Pw Localized modes 63.20.Ry Anharmonic lattice modes 63.50.+x Vibrational states in disordered systems 66.90.+r Other topics in nonelectronic transport properties of condensed matter (restricted to new topics in section 66) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Yakusevich, Nonlinear Physics of DNA, Wiley series in nonlinear sciences (John Wiley & sons, Weinheim, 2004) Google Scholar
  2. M. Peyrard, A. Bishop, Phys. Rev. Lett. 62, 2755 (1989) CrossRefADSGoogle Scholar
  3. V. Danilov, V. Anisimov, Journal of Biomolecular Structure and Dynamics 22, 471 (2005) Google Scholar
  4. D. Jose, D. Porschke, Nucleic Acids Res. 32, 2251 (2004) CrossRefGoogle Scholar
  5. Y. Gaididei, S. Mingaleev, P. Christiansen, K. Rasmussen, Phys. Rev. E 55, 6141 (1997) CrossRefADSGoogle Scholar
  6. S. Mingaleev, P. Christiansen, Y. Gaididei, M. Johansson, K. Rasmussen, J. Biol. Phys. 25, 41 (1999) CrossRefGoogle Scholar
  7. J. Archilla, P. Christiansen, S. Mingaleev, Y. Gaididei, J. Phys. A: Math. and Gen. 34, 6363 (2001) zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. J. Archilla, P. Christiansen, Y. Gaididei, Phys. Rev. E 65, 016609 (2001) MathSciNetCrossRefADSGoogle Scholar
  9. J. Cuevas, F. Palmero, J. Archilla, F. Romero, Phys. Lett. A 299, 221 (2002) CrossRefADSGoogle Scholar
  10. P. Larsen, P. Christiansen, O. Bang, J. Archilla, Y. Gaididei, Phys. Rev. E 69, 026603 (2004) CrossRefADSGoogle Scholar
  11. P. Larsen, P. Christiansen, O. Bang, J. Archilla, Y. Gaididei, Phys. Rev. E 70, 036609 (2004) CrossRefADSGoogle Scholar
  12. S. Aubry, Physica D 103, 201 (1997) MathSciNetCrossRefADSGoogle Scholar
  13. S. Flach, C.R. Willis, Phys. Rep. 295, 181 (1998) MathSciNetCrossRefGoogle Scholar
  14. R. MacKay, Physica A 288, 175 (2000) MathSciNetCrossRefADSGoogle Scholar
  15. D. Chen, S. Aubry, G.P. Tsironis, Phys. Rev. Lett. 77, 4776 (1996) CrossRefADSGoogle Scholar
  16. S. Aubry, T. Cretegny, Physica D 119, 34 (1998) zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. T. Cretegny, Ph.D. thesis, École Normale Supérieure de Lyon (1998) Google Scholar
  18. J. Marín, J. Eilbeck, F. Russell, Phys. Lett. A 248, 225 (1998) CrossRefADSGoogle Scholar
  19. J. Marín, J. Eilbeck, F. Russell, in Nonlinear Science at the dawn of the 21st century, edited by P. Christiansen, M. Soerensen (Springer, 2000), p. 293 Google Scholar
  20. J. Marín, F. Russell, J. Eilbeck, Phys. Lett. A 281, 21 (2001) zbMATHCrossRefADSGoogle Scholar
  21. T. Dauxois, M. Peyrard, C. Willis, Physica D 57, 267 (1992) zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. T. Dauxois, M. Peyrard, A. Bishop, Phys. Rev. E 47, 684 (1993) CrossRefADSGoogle Scholar
  23. M. Gueron, M. Kochoyan, J. Leroy, Nature 328, 89 (1987) CrossRefADSGoogle Scholar
  24. J. Cuevas, J. Archilla, Y. Gaididei, F. Romero, Physica D 163, 106 (2002) zbMATHMathSciNetCrossRefADSGoogle Scholar
  25. K. Forinash, M. Peyrard, B. Malomed, Phys. Rev. E 49, 3400 (1994) CrossRefADSGoogle Scholar
  26. M. Hisakado, Phys. Lett. A 227, 87 (1997) zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. K. Baverstock, Int. J. Radiat. Biol. 47, 369 (1985) Google Scholar
  28. G.S.B. Suter, F. Thoma, Nucleic Acids Res. 28, 4083 (2000) CrossRefADSGoogle Scholar
  29. K. Kleppe, E. Ohtsuka, R. Kleppe, I. Molineux, H. Khorana, J. Mol. Biol. 56, 341 (1971) CrossRefGoogle Scholar
  30. S. Flach, Phys. Rev. E 58, R4116 (1998) Google Scholar
  31. J. Cuevas, F. Palmero, J.F.R. Archilla, F.R. Romero, J. Phys. A: Math. and Gen. 35, 10519 (2002) zbMATHMathSciNetCrossRefADSGoogle Scholar
  32. O. Braun, Y. Kivshar, Phys. Rev. A 43, 1060 (1991) ADSGoogle Scholar
  33. A. Maradudin, E. Montroll, G. Weiss, Theory of lattice dynamics in the harmonic approximation (Academic Press, New York, 1963) Google Scholar
  34. J. Sanz-Serna, M. Calvo, Numerical Hamiltonian problems (Chapman and Hall, 1994) Google Scholar
  35. J. Cuevas, E. Starikov, J. Archilla, D. Hennig (2004), submitted, arXiv:nlin.PS/0404029 Google Scholar
  36. Y. Gaididei, S. Mingaleev, P. Christiansen, Phys. Rev. E 62, R53 (2000) Google Scholar
  37. Y. Doi, Phys. Rev. E 68, 066608 (2003) CrossRefADSGoogle Scholar
  38. J. Ting, M. Peyrard, Phys. Rev. E 53, 1011 (1996) MathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • A. Alvarez
    • 1
  • F. R. Romero
    • 1
    Email author
  • J. F.R. Archilla
    • 2
  • J. Cuevas
    • 2
  • P. V. Larsen
    • 3
  1. 1.Grupo de Física No Lineal, Área de Física Teórica, Facultad de Física, Universidad de SevillaSevillaSpain
  2. 2.Grupo de Física No Lineal, Departamento de Física Aplicada I, ETSI InformáticaUniversidad de SevillaSevillaSpain
  3. 3.Department of MathematicsTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations