Experimental study of electron-phonon properties in ZrB 2

  • E. ForzaniEmail author
  • K. Winzer
Solid and Condensed State Physics


High quality samples and absence of superconductivity down to 40 mK make of ZrB2 the best normal state reference system for the superconducting isostructural MgB2. Actually, the question of pairing has to be focused on the electron-phonon interaction in the normal state. After presenting the resistivity measurements of ZrB2, we explain the details of the Bloch-Grüneisen and Einstein models used to deduce the first results. We then compare experimental de Haas-van Alphen effect data with theoretical Fermi surfaces to present additional results on electron quasi-particle renormalization. The estimations reveal an isotropic and negligible coupling constant of in average \(\left\langle \lambda_{tr} \right\rangle=\) 0.145. The contribution of the coupling to the optical phonon modes is 0.082, in contrast to the known larger coupling of 0.283 [3] to the E2g phonon mode in MgB2.


71.18.+y Fermi surface: calculations and measurements; effective mass, g factor 71.38.-k Polarons and electron-phonon interactions 72.10.-d Theory of electronic transport; scattering mechanisms 74.25.Fy Transport properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Nagamatsu, N. Nagakawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature (London) 410, 63 (2001) CrossRefADSGoogle Scholar
  2. M. Putti, E. Galleani d'Agliano, D. Marrè, F. Napoli, M. Tassisto, P. Manfrinetti, A. Palenzona, C. Rizzuto, S. Massidda, Eur. Phys. J. B 25, 439 (2002) CrossRefADSGoogle Scholar
  3. T. Masui, K. Yoshida, S. Lee, A. Yamamoto, S. Tajima, Phys. Rev. B 65, 214513 (2002) CrossRefADSGoogle Scholar
  4. F. Monteverde, A. Bellosi, Adv. Eng. Mater. 6, 331 (2004); S.C. Tjong, G. Wang, Adv. Eng. Mater. 6 964 (2004); V. Medri, F. Monteverde, A. Balbo, A. Bellosi, Adv. Eng. Mater. 7, 159 (2005) CrossRefGoogle Scholar
  5. R. Heid, K.-P. Bohnen, to be published Google Scholar
  6. H. Rosner, J.M. An, W.E. Pickett, S.-L. Drechsler, Phys. Rev. B 66, 024521 (2002) CrossRefADSGoogle Scholar
  7. The samples used in this work and in RefRosner2, RefDrechs are cut from the same crystal rod, for reference see: S. Otani, Y. Ishizawa, J. Crystal Growth 165, 319 (1996) CrossRefGoogle Scholar
  8. E. Forzani, Master Thesis, Universität Göttingen, 2003 Google Scholar
  9. F. Bloch, Z. Phys. 52, 555 (1929); F. Bloch, Z. Phys. 59, 208 (1930) CrossRefGoogle Scholar
  10. A.V. Sologubenko, J. Jun, S.M. Kasakov, J. Karpinski, H. Rott, cond-mat/0111273 (unpublished) Google Scholar
  11. J.M. Ziman, Electrons and Phonons (Oxford, Clarendon Press 1960) pp. 357–382 Google Scholar
  12. The transformation consists in a series of substitutions applied when the Debye integral is expressed as in (3). The development of the integral (3) to \(\label{eqn:Jm2} J_{m}\left(\frac{\Theta_{D}}{T}\right)= \int^{\Theta_{D}/T}_{0}\frac{z^m\:dz}{e^z +e^{-z} -2}\ , %\label{eqn:Jm2} \) after considering that \(\label{eqn:hyp} {\rm cosh} z= \frac{e^z +e^{-z}}{2} \ \ \textrm{and} \ \ {\rm sinh}^2 \left(\frac{z}{2}\right)= \frac{{\rm cosh{\it z}} -1}{2}\ , %\label{eqn:hyp} \) reduces into \(\label{eqn:Jm3} \int^{\Theta_{D}/T}_{0}\frac{z^m}{2^2}\frac{dz}{{\rm sinh}^2\left(\frac{z}{2}\right)} = \int^{\Theta_{D}/T}_{0}z^{m-2} \left[\frac{\frac{z}{2}}{{\rm sinh}\frac{z}{2}}\right]^2dz\ . %\label{eqn:Jm3} \) Using \(\frac{z}{2}\) as integration variable, \(J_{m}(\frac{\Theta_{D}}{T})\) assumes the form in equation (5) Google Scholar
  13. E. Grüneisen, Handb. d. Phys. XIII, 18 Google Scholar
  14. X.H. Chen, Y.S. Wang, Y.Y. Xue, R.L. Meng, Y.Q. Wang, C.W. Chu, Phys. Rev. B 65, 024502 (2001) and references therein CrossRefADSGoogle Scholar
  15. M. Mott, Proc. Phys. Soc. 47, 571 (1935) CrossRefGoogle Scholar
  16. A. Wilson, Proc. Roy. Soc. A 167, 580 (1938) ADSGoogle Scholar
  17. I.I. Mazin, O.V. Dolgov, Phys. Rev. B 45, 2509 (1992) CrossRefADSGoogle Scholar
  18. This approach was applied to MgB2 in RefPutti1: sintered bulk MgB2 shows a ΘD of 1050 K and \(\acute{\rho}\) of 4.9×10-1 μΩ cm/K. Google Scholar
  19. J.M. Ziman, Electrons and Phonons (Oxford, Clarendon Press 1960), pp. 257-264 Google Scholar
  20. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders International Editions, 1981), pp. 244–251 Google Scholar
  21. F.J. Pinski, P.B. Allen, W.H. Butler, Phys. Rev. B 23, 5080 (1981) CrossRefADSGoogle Scholar
  22. D.J. Scalapino, in Superconductivity, edited by R.D. Parks (M. Dekker, New York, 1969), Vol. 1, pp. 449–500 Google Scholar
  23. W.L. McMillan, Phys. Rev. 167, 331 (1968) CrossRefADSGoogle Scholar
  24. The substitution in (30) of the integration variable \(\omega \rightarrow x = \frac{\hbar \omega}{2 k_B T}\) and the introduction of the Debye frequency \(\omega_D=\frac{k_B}{\hbar}\Theta_D\) produces the resistivity formula (31) Google Scholar
  25. T.I. Jeon, D. Grischkowsky, Phys. Rev. L 78, 1106 (1997) CrossRefADSGoogle Scholar
  26. C.N. King, H.C. Kirsh, T.H. Geballe, Solid State Comm. 9, 907 (1971) CrossRefGoogle Scholar
  27. Method adopted to transport measurements at single-crystal MgB2 in RefMasui Google Scholar
  28. P.B. Allen, W.W. Schulz, Phys. Rev. B 47, 14434 (1993) CrossRefADSGoogle Scholar
  29. P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975) CrossRefADSGoogle Scholar
  30. After writing the integration variable of (41) explicitely, \(\omega = \frac{2 k_B T}{\hbar \omega}x\), and introducing the Einstein frequency as \(\omega_E=\frac{k_B}{\hbar}\Theta_E\), the use of the relation \(\delta(k x) = \frac{1}{\left| k \right|} \delta(x)\) trans- forms the delta function into \(\label{eqn:deltavarchange} \delta(\omega-\omega_E) = \frac{\hbar}{2 k_B T} \delta\left(x-\frac{\Theta_E}{2T}\right) \ . %\label{eqn:deltavarchange} \) Considering that \(\label{eqn:deltaint} \int^{+\infty}_{-\infty} f(x) \delta(x-a) dx = f(a) \ \ \textrm{with} \ \ -\infty < a <+\infty \ , %\label{eqn:deltaint} \) the resistivity formula reduces to (42) Google Scholar
  31. S.-L. Drechsler, private communications Google Scholar
  32. K.-P. Bohnen, R. Heid, B. Renker, Phys. Rev. L 86, 5771 (2001) and references therein CrossRefADSGoogle Scholar
  33. K. Kunc, I. Loa, K. Syassen, R.K. Kremer, K. Ahn, J. Phys.: Cond. Matter 13, 9945 (2001) CrossRefADSGoogle Scholar
  34. D. Shoenberg, Magnetic oscillations in metals (Cambridge, 1984) Google Scholar
  35. For a complete treatise see Chapter 2 and 3 in RefForzani Google Scholar
  36. For all our experiments we found that 0.3< m*t <1.2, with m*≈ 0.5 and \(\left\langle B\right\rangle=9.3\) T, so that the exponential term in equation (54) cannot be neglected. On the contrary, if e-2m*t≪1, the direct plot of ln(A/T) against T/B would give immediately a straight line of slope -bm* Google Scholar
  37. Results from: T. Tanaka, Y. Ishizawa, E. Bannai, S. Kawai, Solid State Comm. 26, 879 (1978). For the technique see also: Y.Ishizawa and T. Tanaka, Inst. Phys. Conf. Ser. No. 75, 29 (1986) CrossRefGoogle Scholar
  38. S.-L. Drechsler, H. Rosner, J.M. An, W.E. Pickett, V.D.P. Servedio, T. Mishonov, E. Forzani, K. Winzer, J. Low Temp. Phys. 131, 1175 (2003) CrossRefGoogle Scholar
  39. The amplitudes of the α and β frequencies show nearly no temperature dependence at our low temperatures. This behaviour is caused by the very small effective masses mα, β*. The scattering of the data prevent any evaluation of mα, β* Google Scholar
  40. B.A. Sanborn, P.B. Allen, D.A. Papaconstantopoulos, Phys. Rev. B 40, 6037 (1989) CrossRefADSGoogle Scholar
  41. H. Rosner, private communications Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Erstes Physikalisches Institut, Georg-August-Universität GöttingenGöttingenGermany

Personalised recommendations