Advertisement

Size matters: some stylized facts of the stock market revisited

  • Z. EislerEmail author
  • J. Kertész
Interdisciplinary Physics

Abstract.

We reanalyze high resolution data from the New York Stock Exchange and find a monotonic (but not power law) variation of the mean value per trade, the mean number of trades per minute and the mean trading activity with company capitalization. We show that the second moment of the traded value distribution is finite. Consequently, the Hurst exponents for the corresponding time series can be calculated. These are, however, non-universal: The persistence grows with larger capitalization and this results in a logarithmically increasing Hurst exponent. A similar trend is displayed by intertrade time intervals. Finally, we demonstrate that the distribution of the intertrade times is better described by a multiscaling ansatz than by simple gap scaling.

PACS.

89.75.-k Complex systems 89.75.Da Systems obeying scaling laws 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 89.65.Gh Economics; econophysics, financial markets, business and management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Economy As an Evolving Complex System, edited by P.W. Anderson, Santa Fe Institute Studies in the Sciences of Complexity Proceedings (1988) Google Scholar
  2. The Economy As an Evolving Complex System II: Proceedings, edited by W.B. Arthur, S.N. Durlauf, D.A. Lane, Santa Fe Institute Studies in the Sciences of Complexity Lecture Notes (1997) Google Scholar
  3. Econophysics: An Emergent Science, edited by J. Kertész, I. Kondor, http://newton.phy.bme.hu/~kullmann/ Egyetem/konyv.html (1997) Google Scholar
  4. J.-P. Bouchaud, M. Potters, Theory of Financial Risk (Cambridge University Press, Cambridge, 2000) Google Scholar
  5. R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, 1999) Google Scholar
  6. B.B. Mandelbrot, Fractals and scaling in finance: Discontinuity, concentration, risk (1997) Google Scholar
  7. L.E. Reichl, A Modern Course in Statistical Physics, 2nd edn. (Wiley, 1998) Google Scholar
  8. P. Gopikrishnan, M. Meyer, L.A.N. Amaral, H.E. Stanley, Eur. Phys. J. B 3 139 (1998) Google Scholar
  9. T. Lux, Applied Financial Economics 6, 463 (1996) CrossRefADSGoogle Scholar
  10. M. Gallegatti, S. Keen, T. Lux, P. Ormerod, Worrying Trends in Econophysics, available from http://www.unifr.ch.econophysics/, to appear in Physica A Google Scholar
  11. P. Gopikrishnan, V. Plerou, X. Gabaix, H.E. Stanley, Phys. Rev. E 62, 4493 (2000) CrossRefADSGoogle Scholar
  12. P.Ch. Ivanov, A. Yuen, B. Podobnik, Y. Lee, Phys. Rev. E 69, 56107 (2004) CrossRefADSGoogle Scholar
  13. Trades and Quotes Database for 1993–2003, New York Stock Exchange, New York Google Scholar
  14. G. Zumbach, Quantitative Finance 4, 441 (2004) CrossRefGoogle Scholar
  15. Z. Eisler, J. Kertész, Phys. Rev. E 73, 046109 (2006) CrossRefADSGoogle Scholar
  16. X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003) CrossRefADSGoogle Scholar
  17. V. Plerou, P. Gopikrishnan, X. Gabaix, H.E. Stanley, Quantitative Finance 4, C11 (2004) Google Scholar
  18. J.D. Farmer, F. Lillo, Quantitative Finance 4, C7 (2004) Google Scholar
  19. J.D. Farmer, L. Gillemot, F. Lillo, S. Mike, A. Sen, Quantitative Finance 4, 383 (2004) CrossRefGoogle Scholar
  20. S.M.D. Queirós, Europhys. Lett. 71, 339 (2005) MathSciNetCrossRefADSGoogle Scholar
  21. F. Lillo, R.N. Mantegna, Phys. Rev. E 62, 6126 (2000) CrossRefADSGoogle Scholar
  22. B.M. Hill. Annals of Statistics 3, 1163 (1975) Google Scholar
  23. M.I. Fraga Alves, Extremes 4, 199 (2001) zbMATHMathSciNetCrossRefGoogle Scholar
  24. Z. Eisler, J. Kertész, S.-H. Yook, A.-L. Barabási. Europhys. Lett. 69, 664 (2005) CrossRefADSGoogle Scholar
  25. Data available upon request Google Scholar
  26. T. Vicsek. Fractal Growth Phenomena (World Scientific Publishing, 1992) Google Scholar
  27. C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49, 1685 (1994) CrossRefADSGoogle Scholar
  28. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H. Eugene Stanley, Physica A 316, 87 (2002) zbMATHCrossRefADSGoogle Scholar
  29. R.C. Ball, O.R. Spivack, J. Phys. A: Math. Gen. 23, 5295 (1990) zbMATHCrossRefADSGoogle Scholar
  30. J. Kwapien, P. Oswiecimka, S. Drozdz. Physica A 350, 466 (2005) CrossRefADSGoogle Scholar
  31. G. Bonanno, F. Lillo, R.N. Mantegna, Physica A 280, 136 (2000) CrossRefADSGoogle Scholar
  32. E. Scalas, R. Gorenflo, H. Luckock, F. Mainardi, M. Mantelli, M. Raberto. Quantitative Finance 4, 695 (2004) CrossRefGoogle Scholar
  33. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman. Phys. Rev. A 33, 1141 (1986) MathSciNetCrossRefADSGoogle Scholar
  34. K.P.N. Murthy, K.W. Kehr, A. Giacometti, Phys. Rev. E 53, 444 (1996) CrossRefADSGoogle Scholar
  35. A. Yuen, P.Ch. Ivanov, Impact of stock market microstructure on intertrade time and price dynamics, 2005 arXiv:physics/0508203 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Laboratory of Computational Engineering, Helsinki University of TechnologyEspooFinland

Personalised recommendations