Advertisement

Effect of nitrogen concentration on the electronic and vibrational properties of zinc-blende InNxP1-x(x < 0.01)

  • M. DebbichiEmail author
  • A. Ben Fredj
  • A. Bhouri
  • N. Bouarissa
  • M. Said
Solid and Condensed State Physics

Abstract.

Taking into account the recent advances in the epitaxial growth of single-crystal InN leading to a drastic re-evaluation of its fundamental energy band gap, we have studied the electronic properties of InNxP1-x (x < 0.01) ternary alloy. Using the empirical pseudopotential method under the virtual crystal approximation, combined with the Harrison bond orbital model, the band gap at Γ, X and L points, the effective masses of the Γ valley and the electronic charge densities are calculated as a function of nitrogen composition. The fitted expressions of the energy band gaps indicate that the bowing parameter at Γ reached a broad value for very low nitrogen incorporation (\(x\le 1\%\)). Furthermore, the band gap at Γ point decreases drastically with increasing nitrogen composition up to 1%. The elastic constants and the optical phonon frequencies are also reported. Our theoretical results provide a good agreement with the available data.

PACS.

71.20.Nr Semiconductor compounds 71.15.-m Methods of electronic structure calculations 71.15.Dx Computational methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kondow, T. Kitatani, S. Naka tsuka, M.C. Larson, K. Nakahara, K. Uomi, H. Inoue, J. Cryst. Crowth 188, 255 (1998) CrossRefGoogle Scholar
  2. D.J. Friedman, F.J. Geisz, S.R. Kurtz, D. Myers, J.M. Olson, J. Cryst. Crowth 195, 409 (1998) CrossRefGoogle Scholar
  3. S.R. Kurtz, A.A. Allerman, E.D. Jones, J.M. Gee, J.J. Banas, B.E. Hammons, Appl. Phys. Lett. 74, 729 (1999) CrossRefADSGoogle Scholar
  4. M. Weyers, M. Sato, H. Ando, Jpn J. Appl. Phys. 3, L853 (1992) Google Scholar
  5. S. Sakai, Y. Ueta, Y. Teranchi, Jpn J. Appl. Phys. 32, 4413 (1993) CrossRefGoogle Scholar
  6. M. Kondow, K. Uomi, K. Hosmi, T. Mozume, Jpn J. Appl. Phys. 33, L1056 (1994) Google Scholar
  7. W. Shan, W. Walukiewicz, K.M. Yu, J. Wu, J.W. Ager III, E.E. Haller, H.P. Xin, C.W. Tu, Appl. Phys. Lett. 76, 3251 (2000) CrossRefADSGoogle Scholar
  8. W. Shan, W. Walukiewicz, J.W. Ager III, Phys. Rev. Lett. 82, 1221 (1999) CrossRefADSGoogle Scholar
  9. P.R.C. Kent, A. Zunger, Phys. Rev. B 64, 115208 (2001) CrossRefADSGoogle Scholar
  10. P.R.C. Kent, A. Zunger, Phys. Rev. Lett. 86, 2613 (2001) CrossRefADSGoogle Scholar
  11. Y. Zhang, A. Mascarenhas, X.P. Xin, C.W. Tu, Phys. Rev. B 61, 7479 (2000) CrossRefADSGoogle Scholar
  12. L. Bellaiche, S.-H. Wei, A. Zunger, Phys. Rev. B 54, 17568 (1996) CrossRefADSGoogle Scholar
  13. H. Yaguchi, S. Miyoshi, G. Biwa, M. Kibune, K. Onabe, Y. Shiraki, R. Ito, J. Cryst. Crowth 170, 353 (1997) CrossRefGoogle Scholar
  14. Y.W. Zhao, Z.Y. Dong, M.L. Duan, W.R. Sun, Y.P. Zeng, N.F. Sun, T.N. Sun, Eur. Phys. J. App. Phys. 27, 167 (2003) CrossRefADSGoogle Scholar
  15. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. App. Phys. 89, 5815 (2001) CrossRefADSGoogle Scholar
  16. W.G. Bi, C.W. Tu, J. Appl. Phys. 80, 1934 (1996) CrossRefADSGoogle Scholar
  17. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, Hai Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002) CrossRefADSGoogle Scholar
  18. I. Vurgaftman, J.R. Meyer, J. App. Phys. 94, 3675 (2003) CrossRefGoogle Scholar
  19. M. Goano, E. Belloti, E. Ghillino, C. Garetto, G. Ghione, K.F. Brennan, J. App. Phys. 88, 4676 (2000) CrossRefADSGoogle Scholar
  20. A. Bhouri, F. Ben Zid, H. Mejri, A. Ben Fredj, N. Bouarissa, M. Said, J. Phys.: Condens. Matt. 14, 7017 (2002) CrossRefADSGoogle Scholar
  21. F. Ben Zid, A. Bhouri, H. Mejri, M. Said, N. Bouarissa, J.-L. Lazzari, F. Arnaud d'Avitaya, J. Derrien, Physica B 322, 225 (2002) CrossRefADSGoogle Scholar
  22. K. Kassali, N. Bouarissa, Microelectronic Engineering 54, 277 (2000) CrossRefGoogle Scholar
  23. N. Bouarissa, Phys. Lett. A 245, 285 (1998) CrossRefADSGoogle Scholar
  24. H. Aourag, B. Bouhafs, M. Certier, Phys. Stat. Sol. (b) 201, 117 (1997) CrossRefADSGoogle Scholar
  25. T. Kobayasi, H. Nara, Bull. Coll. Med. Sci. Tohoku Univ. 2, 7 (1993) Google Scholar
  26. K.M. Yu, W. Walukiewicz, J. Wu, J.W. Beeman, J.W. Ager III, E.E. Haller, W. Shan, H.P. Xin, C.W. Tu, Appl. Phys. Lett. 78, 1077 (2001) CrossRefADSGoogle Scholar
  27. G. Leibiger, V. Gottschalch, M. Schubert, G. Benndorf, R. Schwabe, Phys. Rev. B 65, 245207 (2002) CrossRefADSGoogle Scholar
  28. T. Makimoto, H. Saito, T. Nishida, N. Kobayashi, Appl. Phys. Lett. 70, 2984 (1997) CrossRefADSGoogle Scholar
  29. W. Walukiewicz, Physica E 20, 300 (2004) CrossRefADSGoogle Scholar
  30. A. Bhouri, H. Mejri, F. Ben Zid, H. Belmabrouk, M. Said, N. Bouarissa, J.-L. Lazzari, J. Phys.: Condens. Matt. 16, 511 (2004) CrossRefADSGoogle Scholar
  31. K.-H. Hellwege, LANDOLT-BORNSTEIN Numerical Da to and functional relation ships in science and technology, Group III: Grystal and solid state physics, Semiconductors Subvolume a: physics of group IV element and III–V compounds (Springer-Verlag, Berlin, 1982) Vol. 17, pp. 281–97 Google Scholar
  32. N. Bouarissa, Infrared Phys. Technol. 39, 265 (1998) CrossRefADSGoogle Scholar
  33. N. Bouarissa, Mater. Chem. Phys. 65, 107 (2000) CrossRefGoogle Scholar
  34. N. Bouarissa, Eur. Phys. J. B 26, 153 (2002) CrossRefADSGoogle Scholar
  35. J.M. Baranowski, J. Phys. C 17, 6287 (1984) CrossRefADSGoogle Scholar
  36. N. Bouarissa, K. Kassali, Phys. Stat. Sol. (b) 228, 663 (2001); Erratum 231, 294 (2002) CrossRefADSGoogle Scholar
  37. K. Kim, W.R.L. Lambrecht, B. Segall, Phys. Rev. B 53, 16310 (1996) CrossRefADSGoogle Scholar
  38. N. Bouarissa, S. Bougouffa, A. Kamli, Semicond. Sci. Technol. 20, 265 (2005) CrossRefADSGoogle Scholar
  39. C. Kittel, Introduction to Solid-State Physics, 5th edn. (New York, Wiley, 1976) Google Scholar
  40. S.Y. Davydov, S.K. Tikhonov, Semicondutors 32, 947 (1998) CrossRefADSGoogle Scholar
  41. J.A. Sanjurjo, E. Lopez-Cruz, P. Vogl, M. Cardona, Phys. Rev. B 28, 4579 (1983) CrossRefADSGoogle Scholar
  42. P. Vogl, J. Phys. C 11, 251 (1978) CrossRefADSGoogle Scholar
  43. Detlef Scneider, Detlef Rurup, Bernd Schonfelder, Andreas Schlachetzki, Z. Phys. B 100, 33 (1996) CrossRefGoogle Scholar
  44. S. Adachi, J. Appl. Phys. 61, 4869 (1987) and references cited therein CrossRefADSGoogle Scholar
  45. T. Matsuaka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002) CrossRefADSGoogle Scholar
  46. A. de Bernabé, C. Prieto, L. Gonzàlez, Y. Gonzàlez, A.G. Every, J. Phys.: Condens. Matt. 11, L323 (1999) Google Scholar
  47. G. Carlotti, D. Fioretto, L. Polmieri, G. Socino, A. Verdini, C. Rigo, J. Phys.: Condens. Matt. 8, 2265 (1996) CrossRefADSGoogle Scholar
  48. K. Kim, W.R.L. Lambrecht, B. Segall, Phys. Rev. B 50, 1502 (1994) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • M. Debbichi
    • 1
    Email author
  • A. Ben Fredj
    • 1
  • A. Bhouri
    • 1
  • N. Bouarissa
    • 2
  • M. Said
    • 1
  1. 1.Unité de Physique des Solides, Faculté des Sciences de MonastirMonastirTunisia
  2. 2.Department of PhysicsFaculty of Science, King Khalid UniversityAbhaSaudi Arabia

Personalised recommendations