Advertisement

Cooperative motions in a finite size model of liquid silica: an anomalous behavior

  • V. TeboulEmail author
Statistical and Nonlinear Physics

Abstract.

Finite size effects on dynamical heterogeneity are studied in liquid silica with Molecular Dynamics simulations using the BKS potential model. When the system size decreases relaxation times are found to increase in accordance with previous results in finite-size simulations and confined liquids. It has been suggested that this increase may be related to a modification of the spatially heterogeneous dynamics in confined liquids. In agreement with this hypothesis we observe a decrease of the spatially heterogeneous dynamics when the size decreases. The spatially heterogeneous dynamics is usually characterized by the dynamical aggregation of the most or the least mobile atoms. However we find that the decrease of the dynamical aggregation associated to the least mobile atoms is much more important than the decrease associated to the most mobile atoms when the size decreases. This result associated with a slowing down of the liquid is surprising as it is expected that the dynamical aggregation of the least mobile atoms should increase the slowing down of the liquid dynamics. The decrease of the heterogeneous behaviour is also in contradiction with the increase of the spatially heterogeneous dynamics observed in liquids confined inside nanopores. However, an increase of the non-Gaussian parameter appears both for the confinement inside nanopores and for the finite size simulations. As the non-Gaussian parameter is usually associated with the heterogeneous dynamics, the increase of the non-Gaussian parameter together with a decrease of the spatially heterogeneous dynamics is also surprising.

PACS.

61.43.Fs Glasses 64.70.Pf Glass transitions 66.10.Cb Diffusion and thermal diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965) CrossRefGoogle Scholar
  2. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000) CrossRefGoogle Scholar
  3. H. Sillescu, J. Non-Crystal. Sol. 243, 81 (1999) CrossRefGoogle Scholar
  4. W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997) CrossRefADSGoogle Scholar
  5. C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998) CrossRefADSGoogle Scholar
  6. R. Yamamoto, A. Onuki, Phys. Rev. Lett. 81, 4915 (1998) CrossRefADSGoogle Scholar
  7. R. Yamamoto, A. Onuki, Phys. Rev. E 58, 3515 (1998) CrossRefADSGoogle Scholar
  8. A. Kerrache, V. Teboul, D. Guichaoua, A. Monteil, J. Non-Cryst. Solids 322, 41 (2003) CrossRefGoogle Scholar
  9. V. Teboul, C. Alba-Simionesco, Chem. Phys. 317, 245 (2005) CrossRefGoogle Scholar
  10. V. Teboul, A. Monteil, L.C. Fai, A. Kerrache, S. Maabou, Eur. Phys. J. B 40, 49 (2004) CrossRefADSGoogle Scholar
  11. M. Vogel, S.C. Glotzer, Phys. Rev. E 70, 061504 (2004) CrossRefADSGoogle Scholar
  12. V. Teboul, S. Maabou, L. C. Fai, A. Monteil, Eur. Phys. J. B 43, 355 (2005) CrossRefADSGoogle Scholar
  13. V. Teboul, C. Alba-Simionesco, J. Phys.: Cond. Matt. 14, 5699 (2002) CrossRefADSGoogle Scholar
  14. C. Alba-Simionesco, G. Dosseh, E. Dumont, B. Frick, B. Geil, D. Morineau, V. Teboul, Y. Xia, Eur. Phys. J. E 12, 19 (2003) CrossRefGoogle Scholar
  15. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 52, 277 (2000); P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 59, 701 (2002); P. Scheidler, W. Kob, K. Binder, Eur. Phys. J. E 12, 5 (2003) CrossRefADSGoogle Scholar
  16. F. Varnik, J. Baschnagel, K. Binder, M. Mareschal, Eur. Phys. J. E 12, 167 (2003); F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002) CrossRefADSGoogle Scholar
  17. K. Kim, R. Yamamoto, Phys. Rev. E 61, R41 (2000) Google Scholar
  18. Z. Yigang, G. Guangjun, K. Refson, Z. Yajuan, J. Phys.: Cond. Matt. 16, 2427 (2004) CrossRefGoogle Scholar
  19. J. Horbach, W. Kob, K. Binder, C.A. Angell, Phys. Rev. 54, R5897 (1996) Google Scholar
  20. B. Doliwa, A. Heuer, J. Phys.: Cond. Matt. 15, S849 (2003) Google Scholar
  21. J. Horbach, W. Kob, K. Binder, Eur. Phys. J. B 19, 531 (2001) CrossRefADSGoogle Scholar
  22. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, New York, 1990) Google Scholar
  23. B.W.H. Van Beest, G.J. Kramer, R.A. Van Santen, Phys. Rev. Lett. 64, 1955 (1990) CrossRefADSGoogle Scholar
  24. Y. Guissani, B. Guillot, J. Chem. Phys. 104, 7633 (1996) CrossRefADSGoogle Scholar
  25. M. Hemmati, C.A. Angell, Physics meets geology, edited by M. Aoki, R. Hemley (Cambridge University Press, 1998) Google Scholar
  26. A. Kerrache, V. Teboul, A. Monteil, Chem. Phys. 321, 69 (2006) CrossRefGoogle Scholar
  27. J.C. Mikkelsen, Appl. Phys. Lett. 45, 1187 (1984) CrossRefADSGoogle Scholar
  28. G. Brebec, R. Seguin, C. Sella, J. Brevenot, J.C. Martin, Acta. Mettall. 28, 327 (1980) CrossRefGoogle Scholar
  29. H.J.C. Berendsen, J.P.M. Postma, W. Van Gunsteren, A. Di Nola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984) CrossRefADSGoogle Scholar
  30. C. Bennemann, C. Donati, J. Baschnagel, S.C. Glotzer, Nature 399, 246 (1999) CrossRefADSGoogle Scholar
  31. M. Goldstein, J. Chem. Phys. 51, 3728 (1969) CrossRefGoogle Scholar
  32. J. Horbach, W. Kob, K. Binder, Phil. Mag. B 77, 297 (1998) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire des Propriétés Optiques des Matériaux et Applications, CNRS UMR 6136, Université d'AngersAngers CedexFrance

Personalised recommendations