Advertisement

Magnetic field generation by convective flows in a plane layer

  • O. M. PodviginaEmail author
Hydrodynamics

Abstract.

Hydrodynamic and magnetohydrodynamic convective attractors in a plane horizontal layer 0≤z≤1 are investigated numerically. We consider Rayleigh-Bénard convection in Boussinesq approximation assuming stress-free boundary conditions on horizontal boundaries and periodicity with the same period L in the x and y directions. Computations have been performed for the Prandtl number P=1 for \(L=2\sqrt2\) and Rayleigh numbers 0<R≤4000, and for L=4, 0<R≤2000. Fifteen different types of hydrodynamic attractors are found, including two types of steady states distinct from rolls, travelling waves, periodic and quasiperiodic flows, and chaotic attractors of heteroclinic nature. Kinematic dynamo problem has been solved for the computed convective attractors. Out of the 15 types of the observed attractors only 6 can act as kinematic dynamos. Nonlinear magnetohydrodynamic regimes have been explored assuming as initial conditions convective attractors capable of magnetic field generation, and a small seed magnetic field. After initial exponential growth, in the saturated regime magnetic energy remains much smaller than the flow kinetic energy. The final magnetohydrodynamic attractors are either quasiperiodic or chaotic.

PACS.

47.20.Ky Nonlinearity, bifurcation, and symmetry breaking 47.20.Bp Buoyancy-driven instabilities (e.g., Rayleigh-Benard) 91.25.Cw Origins and models of the magnetic field; dynamo theories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Glatzmaier, P.H. Roberts, Nature 377, 203 (1995) CrossRefADSGoogle Scholar
  2. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, 1981) Google Scholar
  3. A. Schluter, D. Lortz, F. Busse, J. Fluid Mech. 146, 115 (1984) CrossRefGoogle Scholar
  4. E. Knobloch, M. Silber, Geophys. Astrophys. Fluid Dynamics 51, 195 (1990) MathSciNetADSGoogle Scholar
  5. F.H. Busse, Rep. Prog. Phys. 41, 1929 (1978) CrossRefADSGoogle Scholar
  6. F.H. Busse, in Mantle Convection: Plate Tectonics, Global Dynamics, edited by W.R. Peltier 23 (1989) Google Scholar
  7. F.H. Busse, E.W. Bolton, J. Fluid Mech. 146, 115 (1984) zbMATHCrossRefADSGoogle Scholar
  8. E.W. Bolton, F.H. Busse, J. Fluid Mech. 150, 487 (1985) zbMATHCrossRefADSGoogle Scholar
  9. E.W. Bolton, F.H. Busse, R.M. Clever, J. Fluid Mech. 164, 469 (1986) zbMATHMathSciNetCrossRefADSGoogle Scholar
  10. R.M. Clever, F.H. Busse, J. Fluid Mech. 176, 403 (1987) CrossRefADSGoogle Scholar
  11. A. Demircan, N. Seehafer, Europhys. Lett. 53, 202 (2001) CrossRefADSGoogle Scholar
  12. M. Assenheimer, V. Steinberg, Phys. Rev. Lett. 76, 756 (1996) CrossRefADSGoogle Scholar
  13. R.M. Clever, F.H. Busse, Phys. Rev. E 53, 2037 (1996) CrossRefADSGoogle Scholar
  14. F.H. Busse, R.M. Clever, Phys. Lett. 81, 341 (1998) CrossRefGoogle Scholar
  15. Ya.B. Zeldovich, Journ. Exper. Theor. Phys. 31, 154 (1956); Engl. transl.: Sov. Phys. J.E.T.P. 4, 460 (1957) zbMATHGoogle Scholar
  16. P.C. Matthews, Proc. R. Soc. 455, 1829 (1999) zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. F. Busse, J. Fluid Mech. 57, 529 (1973) zbMATHCrossRefADSGoogle Scholar
  18. A. Demircan, N. Seehafer, Geophys. Astrophys. Fluid Dynamics 96, 461 (2002) MathSciNetCrossRefADSGoogle Scholar
  19. C.A. Jones, P.H. Roberts, J. Fluid Mech. 404, 311 (2000) zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. J. Rotvig, C.A. Jones, Phys. Rev. E 66, 056308 (2002) MathSciNetCrossRefADSGoogle Scholar
  21. M. Meneguzzi, A. Pouquet, J. Fluid Mech. 205, 297 (1989) CrossRefADSGoogle Scholar
  22. F. Cattaneo, T. Emonet, N. Weiss, Astrophysical Journal 588, 1183 (2003) CrossRefADSGoogle Scholar
  23. J.-C. Thelen, F. Cattaneo, Mon. Not. R. Astron. Soc. 315, L13 (2000) Google Scholar
  24. J.P. Boyd, Chebyshev and Fourier Spectral Methods (Springer-Verlag, Berlin 1989) Google Scholar
  25. V. Zheligovsky, J. Scientific Comput., 8 (1), 41 (1993) Google Scholar
  26. D.J. Galloway, U. Frisch, Geophys. Astrophys. Fluid Dynamics 29, 13 (1984) MathSciNetADSGoogle Scholar
  27. D.J. Galloway, U. Frisch, Geophys. Astrophys. Fluid Dynamics 36, 53 (1986) MathSciNetADSGoogle Scholar
  28. V.A. Zheligovsky, Geophys. Astrophys. Fluid Dynamics 73, 217 (1993) ADSGoogle Scholar
  29. V.A. Zheligovsky, D.J. Galloway, Geophys. Astrophys. Fluid Dynamics 88, 277 (1998) MathSciNetADSGoogle Scholar
  30. H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, 1978) Google Scholar
  31. D.J. Galloway, V.A. Zheligovsky, Geophys. Astrophys. Fluid Dynamics 76, 253 (1994) ADSGoogle Scholar
  32. M.R.E. Proctor, P.C. Matthews, Physica D 97, 229 (1996) CrossRefGoogle Scholar
  33. D. Armbruster, J. Guckenheimer, P. Holmes, Physica D 29, 257 (1988). zbMATHMathSciNetCrossRefADSGoogle Scholar
  34. M. Golubitsky, I.N. Stewart, D. Schaeffer, Singularities and Groups in Bifurcation Theory. Volume 2, Appl. Math. Sci. 69 (Springer-Verlag, New York, 1988) Google Scholar
  35. E. Bodenschatz, W. Pesch, G. Ahlers, Annu. Rev. Fluid Mech. 32, 709 (2000) zbMATHMathSciNetCrossRefADSGoogle Scholar
  36. R.V. Cakmur, D.A. Egolf, B.B. Plapp, E. Bodenschatz, Phys. Rev. Lett. 79, 1853 (1997) CrossRefADSGoogle Scholar
  37. O.M. Podvigina, accepted in Dynamical Systems (2005) Google Scholar
  38. O. Podvigina, P. Ashwin, D. Hawker, accepted in Physica D (2005) Google Scholar
  39. M. Krupa, I. Melbourne, Ergodic Theory Dyn. Syst. 15, 121 (1995) zbMATHMathSciNetCrossRefGoogle Scholar
  40. P. Hirschberg, E. Knobloch, Chaos 3, 713 (1993) zbMATHMathSciNetCrossRefADSGoogle Scholar
  41. P. Hirschberg, E. Knobloch, Nonlinearity 11, 89 (1998) zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.International Institute of Earthquake Prediction Theory and Mathematical GeophysicsMoscowRussian Federation
  2. 2.Laboratory of General Aerodynamics, Institute of Mechanics, Lomonosov Moscow State UniversityMoscowRussian Federation
  3. 3.Observatoire de la Côte d'Azur, BP 4229Nice Cedex 4France

Personalised recommendations