Random field Ising model and community structure in complex networks

Statistical and Nonlinear Physics

Abstract.

We propose a method to determine the community structure of a complex network. In this method the ground state problem of a ferromagnetic random field Ising model is considered on the network with the magnetic field Bs = +∞, Bt = -∞, and Bi≠s,t=0 for a node pair s and t. The ground state problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically with the help of a combinatorial optimization algorithm. The community structure is then identified from the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the existence of the community structure, and is applicable equally well to unweighted and weighted networks. We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary karate club network, the scientific collaboration network, and the stock price correlation network. (Ising, Potts, etc.)

PACS.

89.75.Hc Networks and genealogical trees 89.65.-s Social and economic systems 05.10.-a Computational methods in statistical physics and nonlinear dynamics 05.50.+q Lattice theory and statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) CrossRefMathSciNetADSGoogle Scholar
  2. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002) CrossRefADSGoogle Scholar
  3. M.E.J. Newman, SIAM Rev. 45, 167 (2003) CrossRefMATHMathSciNetGoogle Scholar
  4. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature (London) 407, 651 (2000) CrossRefADSGoogle Scholar
  5. P. Holme, M. Huss, H. Jeong, Bioinformatics 19, 532 (2003) CrossRefGoogle Scholar
  6. D. Wilkinson, B.A. Huberman, Proc. Natl. Acad. Sci. 101, 5241 (2004) CrossRefGoogle Scholar
  7. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Science 297, 1551 (2002); E. Ravasz, A.-L. Barabási, Phys. Rev. E 67, 026112 (2003) CrossRefADSGoogle Scholar
  8. R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999); G. Bonanno, G. Caldarelli, F. Lillo, R.N. Mantegna, Phys. Rev. E 68, 046130 (2003) CrossRefADSGoogle Scholar
  9. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, A. Kanto, Phys. Rev. E 68, 056110 (2003) CrossRefADSGoogle Scholar
  10. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. 99, 7821 (2002) CrossRefMATHMathSciNetADSGoogle Scholar
  11. M.E.J. Newman, Eur. Phys. J. B 38, 321 (2004) CrossRefADSGoogle Scholar
  12. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004) CrossRefADSGoogle Scholar
  13. M.E.J. Newman, Phys. Rev. E 64, 016131 (2001); M.E.J. Newman, Phys. Rev. E 64, 016132 (2001) CrossRefADSGoogle Scholar
  14. J.R. Tyler, D.M. Wilkinson, B.A. Huberman, e-print arXiv:comd-mat/0303264 (2003) Google Scholar
  15. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Proc. Natl. Acad. Sci. 101, 2658 (2004) CrossRefADSGoogle Scholar
  16. S. Fortunato, V. Latora, M. Marchiori, Phys. Rev. E 70 056104 (2004) Google Scholar
  17. M.E.J. Newman, Phys. Rev. E 69, 066133 (2004) CrossRefADSGoogle Scholar
  18. A. Clauset, M.E.J. Newman, C. Moore, Phys. Rev. E 70, 066111 (2004) CrossRefADSGoogle Scholar
  19. Y. Fu, P.W. Anderson, J. Phys. A 19, 1605 (1986) CrossRefMATHMathSciNetADSGoogle Scholar
  20. M. Blatt, S. Wiseman, E. Domany Phys. Rev. Lett. 76, 3251 (1996) CrossRefADSGoogle Scholar
  21. J. Reichardt, S. Bornholdt, Phys. Rev. Lett. 93, 218701 (2004) CrossRefADSGoogle Scholar
  22. A. Vazquez, A. Flammini, A. Maritan, A. Vespignani, Nat. Biotechnol. 21, 697 (2003) CrossRefMathSciNetGoogle Scholar
  23. R. Guimerá, M. Sales-Pardo, L.A.N. Amaral, Phys. Rev. E 7-, 025101(R) (2004) Google Scholar
  24. H. Zhou, Phys. Rev. E 67, 061901 (2003) CrossRefADSGoogle Scholar
  25. F. Wu, B.A. Huberman, Eur. Phys. J. B 38, 331 (2004) CrossRefADSGoogle Scholar
  26. A.A. Middleton, D.S. Fisher, Phys. Rev. B 65, 134411 (2002) CrossRefADSGoogle Scholar
  27. J.D. Noh, H. Rieger, Phys. Rev. Lett. 87, 176102 (2001); J.D. Noh, H. Rieger, Phys. Rev. E 66, 036117 (2002) CrossRefADSGoogle Scholar
  28. S.-W. Son, H. Jeong, J.D. Noh, unpublished Google Scholar
  29. M. Alava, P.M. Duxbury, C. Moukarzel, H. Rieger, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic, Cambridge, 2000) Vol. 18, pp. 141–317; A. Hartmann, H. Rieger, Optimization Algorithms in Physics (Wiley VCH, Berlin, 2002) Google Scholar
  30. A.-L. Barabási, R. Albert, Science 286, 509 (1999); A.-L. Barabási, R. Albert, H. Jeong, Physica A 272, 173 (1999) CrossRefMathSciNetGoogle Scholar
  31. D.-H. Kim, H. Jeong, Phys. Rev. E 72, 046133 (2005) CrossRefADSGoogle Scholar
  32. J.D. Noh, Phys. Rev. E 61, 5981 (2000) CrossRefMathSciNetADSGoogle Scholar
  33. For Figure 3c, yellow and skyblue correspond to a group of scientists working primarily on the structure of RNA, orange, red, violet, pink, and green correspond to a group working primarily in statistical physics, lightgreen represents a group working on mathematical models in ecology, blue represents a group of scientists using agent-based models to study problems in economics and traffic flow Google Scholar
  34. The tickers correspond to the following companies in the NYSE: Halliburton Co. (HAL), Kerr-Mc-Gee Corp. (KMG), Noble Energy Inc. (NBL), ConocoPhillips (COP), Schlumberger Ltd. (SLB), Chevron Texaco Corp. (CVX), Valero Energy Corp. (VLO), Exxon Mobil Corp. (XOM), BP PLC(BP), Royal Dutch Petroleum Co. (RD), Occidental Petroleum Corp. (OXY), Marathon Oil Corp. (MRO), and Apache Corp. (APA) Google Scholar
  35. Each industrial cluster contains the following companies. Utilities (11 companies, skyblue): Southern Company Inc. (SO), Public Service Enterprise Group Inc. (PEG), PG&E Corp. (PCG), Exelon Corp. (EXC), Entergy Corp. (ETR), Edison International (EIX), American Electric Power Co. Inc. (AEP), Consolidated Edison Inc. (ED), DTE Energy Co. (DTE), CenterPoint Energy Inc. (CNP), and People Energy Corp. (PGL). Health care (6, green): Merck&Co. Inc. (MRK), Wyeth (WYE), Bristol-Myers Squibb Co. (BMY), Johnson&Johnson Inc. (JNJ), Eli Lilly and Co. (LLY), and Pfizer Inc. (PFE). Basic material (5, violet): Boise Cascade Corp. (BCC), Georgia-Pacific Corp. (GP), Louisiana-Pacific Corp. (LPX), Weyerhaeuser Co. (WY), and International Paper Co. (IP). Rail road (4, orange): Union Pacific Corp. (UNP), CSX Corp. (CSX), Burlington Northern Santa Fe Corp. (BNI), and Norfolk Southern Corp. (NSC). Airline (3, blue): AMR Corp. (AMR), Delta Air Lines Inc. (DAL), and Southwest Airlines Inc. (LUV). Google Scholar
  36. L.R. Ford, D.R. Fulkerson Flows in Networks (Princeton University Press, 1962) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of PhysicsChungnam National UniversityDaejeonKorea

Personalised recommendations