Advertisement

Stability of a nonlinear oscillator with random damping

  • N. LeprovostEmail author
  • S. Aumaître
  • K. Mallick
Statistical and Nonlinear Physics

Abstract.

A noisy damping parameter in the equation of motion of a nonlinear oscillator renders the fixed point of the system unstable when the amplitude of the noise is sufficiently large. However, the stability diagram of the system can not be predicted from the analysis of the moments of the linearized equation. In the case of a white noise, an exact formula for the Lyapunov exponent of the system is derived. We then calculate the critical damping for which the nonlinear system becomes unstable. We also characterize the intermittent structure of the bifurcated state above threshold and address the effect of temporal correlations of the noise by considering an Ornstein-Uhlenbeck noise.

PACS.

02.50.-r Probability theory, stochastic processes and statistics (see also section 05 Statistical physics, thermodynamics, and nonlinear dynamical systems) 05.40.-a Fluctuation phenomena, random process, noise and Brownian motion 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Graham, A. Schenzle, Phys. Rev. A 26, 1676 (1982) CrossRefADSMathSciNetGoogle Scholar
  2. M. Lücke, F. Schank, Phys. Rev. Lett. 54, 1465 (1985) CrossRefADSGoogle Scholar
  3. C. Van den Broeck, J.M.R. Parrondo, R. Toral, Phys. Rev. Lett. 73, 3395 (1985) CrossRefGoogle Scholar
  4. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998) CrossRefADSGoogle Scholar
  5. R. Graham, A. Schenzle, Phys. Rev. A 25, 1731 (1982) CrossRefADSMathSciNetGoogle Scholar
  6. R. Bourret, Physica 54, 623 (1971) CrossRefADSGoogle Scholar
  7. R. Bourret, U. Frisch, A. Pouquet, Physica 65, 303 (1973) CrossRefADSGoogle Scholar
  8. A. Becker, L. Kramer, Phys. Rev. Lett. 73, 955 (1994) CrossRefADSGoogle Scholar
  9. B.J. West, V. Seshadri, J. Geophys. Res. 86, 4293 (1981) ADSCrossRefGoogle Scholar
  10. N.G. van Kampen, Physica 74, 239 (1974) CrossRefADSGoogle Scholar
  11. M. Gitterman, Phys. Rev. E 69, 41101 (2004) CrossRefADSMathSciNetGoogle Scholar
  12. L. Arnold, Random Dynamical Systems (Springer-Verlag, 1998) Google Scholar
  13. K. Mallick, P. Marcq, Eur. Phys. J. B 36, 119 (2003) CrossRefADSGoogle Scholar
  14. D. Hansel, J.F. Luciani, J. Stat. Phys. 54, 971 (1985) CrossRefMathSciNetADSGoogle Scholar
  15. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1981) Google Scholar
  16. C.W. Gardiner, Handbook of Stochastic Methods (Springer, 1984) Google Scholar
  17. H. Risken, The Fokker-Planck Equation (Springer, 1989) Google Scholar
  18. I.S. Gradstein, I.M. Rhizik, Table of Integrals, Series and Products (Academic Press, 1994) Google Scholar
  19. J.P. Bouchaud, A. Comtet, A. Georges, P. Ledoussal, Europhys. Lett. 3, 653 (1987) ADSCrossRefGoogle Scholar
  20. E. Ott, J.C. Sommerer, Phys. Lett. A 188, 39 (1994) CrossRefADSGoogle Scholar
  21. D. Sweet, E. Ott, J.F. Finn, T.M. Antonsen, D.P. Lathrop, Phys. Rev. E 63, 66211 (2001) CrossRefADSGoogle Scholar
  22. T. Yamada, H. Fujisaka, Prog. Theor. Phys. 76, 582 (1986) CrossRefADSGoogle Scholar
  23. H. Fujisaka, H. Ishii, M. Inoue, T. Yamada, Prog. Theor. Phys. 76, 1198 (1986) CrossRefADSMathSciNetGoogle Scholar
  24. N. Platt, E.A. Spiegel, C. Tresser, Phys. Rev. Lett. 70, 279 (1993) CrossRefADSGoogle Scholar
  25. N. Leprovost, B. Dubrulle, Eur. Phys. J. B 44, 395 (2005) CrossRefADSGoogle Scholar
  26. S. Aumaître, F. Petrelis, K. Mallick, Phys. Rev. Lett. 95, 064101 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire de Physique Statistique de l'ENSParix Cedex 05France
  2. 2.Service de Physique Théorique, CEA SaclayGif sur Yvette CedexFrance

Personalised recommendations