Advertisement

The conductivity properties of protons in ice and mechanism of magnetization of liquid water

  • X. F. PangEmail author
Solid and Condensed State Physics

Abstract.

From a study of electrical conductivity of protons in the hydrogen-bonded chains in ice we confirm that the magnetization of liquid water is caused by proton transfer in closed hydrogen-bonded chains occurring as a first order phase transition, through which the ice becomes liquid water. We first study the conductive properties of proton transfer along molecular chains in ice crystals in our model. Ice is a typical hydrogen-bonded molecular system, in which the interaction of localized fluctuation of hydrogen ions (H+) with deformation of a structure of hydroxyl group (OH) results in soliton motion of the protons along the molecular chains via ionic and bonded defects. We explain further the quantum conductive properties of proton transfer and determine its mobility and conductivity under constant electric-field using a new theory of proton transfer, which agree with experimental values. From features of first order phase-transition for ice, and some experimental data of pure and magnetized water we confirm further that there are not only free water molecules, but also many linear and closed hydrogen-bonded chains consisting of many polarized water-molecules in the liquid water. Thus a ring proton-current, which resembles to a “molecular current” or a “small magnet” in solids, can occur in the closed hydrogen-bond chains under action of an externally applied magnetic field. Then the water molecules in the closed chains can be orderly arrayed due to the magnetic interaction among these ring proton currents and the externally applied magnetic field. This is just the magnetized effect of the water. In such a case the optical and electronic properties of the water, including the dielectric constant, magnetoconductivity, refraction index, Raman and Infrared absorption spectra, are changed. We determine experimentally the properties of the magnetized water which agree with the theoretical results of our model. However, the magnetized effect of water is, in general, very small, and vanishes at temperatures above 100 C.

Keywords

Soliton Dielectric Constant Proton Transfer Liquid Water Molecular Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xie WenHui, magnetized water and its application (Science Press, Beijing, 1983) Google Scholar
  2. K.M. Joshi, P.V. Kamat, J. Indian Chem. Soc. 43, 620 (1965) Google Scholar
  3. K. Higashitani, J. Colloid Interface Sci. 152, 125 (1992); J. Colloid Interface Sci. 156, 90 (1993) CrossRefGoogle Scholar
  4. B.N. Ke LaXin, magnetization of water (Beijing, Measurement Press, 1982) Google Scholar
  5. Zhou Runliang, Zhan Shuxuan, Yuan Liuying, Li Biyu, Chen Shigeng, J. Nature Sin. 8, 318 (1984) Google Scholar
  6. Li Benyuan, Physics Sin. 5, 240 (1976) Google Scholar
  7. Jiang Yijian, Jia Qingjiou, Zhang PengCheng, Xu Lu, J. Light Scattering 4, 102 (1992) Google Scholar
  8. Pan Zhongcheng, Xun Chengxian, J. Chin. Med. Phys. 7, 226 (1985) Google Scholar
  9. Song Dongning, J. App. Math. Mech. 18, 113 (1997); Cao Changliang, Physics Sin. 22, 361 (1993) CrossRefGoogle Scholar
  10. K. Muller, Z. Chem. 10, 216 (1970); J. Liemeza, Z. Phys. Chem. 99, 33 (1976) Google Scholar
  11. P.V. Hobbs, Ice Physics (Oxford, Clarendon Press, 1974); J.J. Derlin, Int. Rev. Phys. Chem. 9, 29 (1990); L. Onlager, Science 166, 1359 (1969) CrossRefGoogle Scholar
  12. R. Podeszwa, V. Buch, Phys. Rev. Lett. 83, 4570 (1999); V. Buch, P. Sandler, J. Sadlej, J. Phys. Chem. B 102, 8641 (1998); H. Witek, B. Buch, J. Chem. Phys. 110, 3168 (1999); S. Kawajima, A. Warshel, J. Phys. Chem. 94, 460 (1990) CrossRefADSGoogle Scholar
  13. H. Engelheart, B. Bullemer, N. Riehl, in Physics of ice, edited by N. Riehl B. Bullemer, H. Engelheart (Plemun, New York, 1969) Google Scholar
  14. E. Whaley, S.J. Jones, L.W. Grold, Physics and Chemistry of ice, Ottawa, RSC, Royal Society of Canada, (1973) Google Scholar
  15. H. Bluhm, D.F. Ogletree, C.S. Fadley, Z. Hussian, M. Salmeron, J. Phys.: Condens. Matter 14, L227 (2002) Google Scholar
  16. M.Z. Hubmann, Physica B 32, 127 and 141 (1974); C. Jaccard, Helv. Phys. Acta, 32, 89 (1959); K. Koga, H. Tapaka, J. Chem. Phys. 104, 263 (1996) Google Scholar
  17. V.H. Schmidt, J.E. Drumeheller, F.L. Howell, Phys. Rev. B 4, 4582 (1971); A. Kawada, A.R. McGhie, M.M. Labes, J. Chem. Phys. 52, 3121 (1970); G. Zundel, Hydration and Intermolecular Interaction (Mir. Moscow, 1972), p. 1; The Hydrogen Bond, Recent Developments in Theory and Experiments, edited by P. Schuster, G. Zundel, C. Sandorfy (North Holland, Amsterdam, 1976) CrossRefADSGoogle Scholar
  18. W.C. Homilton, J.A. Ibers, Hydrogen bonding in Solids, (Benjamin, New York, 1969); R.P. Bell, The proton in chemistry, (Chapman and Hall, London, 1973); G. Pimentel, A. McClellan, The hydrogen bond (Freeman. San Francisco, 1960) Google Scholar
  19. M. Eigen, L. de Maeyer, H.C. Spatz, Physics of ice crystals (Coll. London, 1962) Google Scholar
  20. A.S. Davydov, Biology and quantum mechanics (New York, Pergamon, 1982) Google Scholar
  21. E. Whalley, S.J. Jones, L.W. Grold, Physics and chemistry of ice (Ottawa, RSC, 1973); J.H. Weiner, A. Asker, Nature 226, 842 (1970); R.J. Nelmes, Ferroelectrics 24, 237 (1980); H. Granicher, Phys. Kond. Materiel, 1, (1963) CrossRefADSGoogle Scholar
  22. L. Pauling, The nature of chemical bond (Cornell University, Ithaca, 1960); T. Bontis, Proton transfers in hydrogen bonded systems (Plenum Press, London, 1992) Google Scholar
  23. V.Ya. Antonchenko, A.S. Davydov, A.V. Zolotaryuk, Phys. Stat. Sol. (b) 115, 631 (1983) MathSciNetCrossRefGoogle Scholar
  24. A.V. Zolotaryuk, R.H. Spatschek, L.E.W. Ladre, Phys. Lett. A 101, 517 (1984); E.W. Laedke, K.H. Spatschek, M. Wlkens, A.V. Zolotaryuk, Phys. Rev. A 20, 1161 (1985) CrossRefADSGoogle Scholar
  25. A.S. Davydov, Solitons in molecular systems (Dordrocht, Kluwer Publisher, 1990), p. 227 Google Scholar
  26. T. Fraggs, St. Pnevmatikos, E.N. Economon, Phys. Lett. A142, 361 (1989) Google Scholar
  27. M. Peyrared, St. Pnevmatikos, N. Flytzanis, Phys. Rev. A 36, 903(1987); H. Weberpals, R.H. Spatschek, Phys. Rev. A 36, 2946 (1987); J. Halding, P.S. Lomdahl, Phys. Rev. A 37, 2608 (1988); R.Mittal, I.A. Howard, Physica D 125, 179 (1999) CrossRefADSGoogle Scholar
  28. D. Hochstrasser, H. Buttner, H. Dosfontaines, M. Peyrared, Phys. Rev. A 38, 5332 (1988); H. Desfontaines, M. Peyrared, Phys. Lett. A 142, 128 (1989) CrossRefADSGoogle Scholar
  29. St. Pnevmatikos, Phys. Rev. Lett. 60, 1534 (1988); Phys. Lett. A 112, 249 (1987); J.M. Braum, Yu. S. Kivshar, Phys. Lett. A 149, 119 (1990); Phys. Rev. B 43, 1060 (1991); St. Pnevmatikos, N. Flytzanis, A.R. Bishop, J. Phys. C. Solid State Phys. 20, 2829 (1987) CrossRefADSGoogle Scholar
  30. J.F. Nagle, S.T. Nagle, J. Membr. Biol. 74, 1 (1983); J.F. Nagle, H.J. Morowitz, Proc. Natl. Acad. Sci. USA 75, 298 (1976); J.F. Nagle, M. Mille, H.J. Morowitz, J. Chem. Phys. 72, 3959 (1980) CrossRefGoogle Scholar
  31. A. Godzik, Chem. Phys. Lett. 171, 217 (1990) CrossRefADSGoogle Scholar
  32. A.V. Zolotaryuk, A.V. Savin, E. Economou, Phys. Rev. B 57, 234 (1998) CrossRefADSGoogle Scholar
  33. A.V. Zolotaryuk, St. Pnevmatikos, Phys. Lett. A 142, 233 (1996); Yu. S. Kivshar, Phys. Rev; A 43, 3117 (1991); A.V. Zolotaryuk, M. Peyrared, K.H. Sputschek, Phys. Rev. E 62, 5706 (2000) Google Scholar
  34. St. Pnermatikos, A.V. Savin, A.V. Zolotariuk, Y.S. Kivshar, M.J. Velgakis, Phys. Rev. A 43, 5518 (1991) CrossRefADSGoogle Scholar
  35. St. Pnevmatikos, Y.S. Kivshar, M.J. Valgakis, A.V. Zolotaryuk, Phys. Lett. A 173, 43 (1993); G.P. Tsironis, St. Pnevmatikos, Phys. Rev. B 39, 7161 (1989) CrossRefADSGoogle Scholar
  36. E.S. Kryachko, Solid Stat. Commun. 65, 1609 (1988) CrossRefADSGoogle Scholar
  37. Y.P. Mei, J.R. Yan, X.H. Yan, J.Q. You, Phys. Rev. B 48, 575 (1993); Y.P. Mei, J.R. Yan, Phys. Lett. A 180, 259 (1993) ADSGoogle Scholar
  38. I. Chochliouros, I. Pouget, J. Phys.: Condens. Matter 7, 8741 (1995); I. Bontis, Proton transfer in hydrogen bonded systems (Plenum Press, London, 1992) CrossRefADSGoogle Scholar
  39. M. Eigen, L. de Maeyer, Proc. Roy. Soc. A 247, 505 (1958) ADSCrossRefGoogle Scholar
  40. X.F Pang (Pang Xiao-feng), H.J.W. Miiller-Kirsten, J. Phys.: Condens. Matter 12, 885 (2000) CrossRefADSGoogle Scholar
  41. X.F. Pang, Y.P. Feng, Chem. Phys. Lett. 373, 392 (2003); X.F. Pang, G. Zundel, Acta of Phys. Sin. 46, 625 (1997) and Chinese Physics 7, 70 (1998) CrossRefADSGoogle Scholar
  42. Pang Xiao-feng, A.F. Jalbout, Phys. Lett. A 330, 245 (2004); X.F. Pang, Chinese Phys. 9(2), 86 (2000); X.F. Pang, Advance of Physics Sin. 22, 214 (2002); X.F. Pang, Phys. Stat. Sol. (b) 221, 1795 (2002) CrossRefADSzbMATHGoogle Scholar
  43. Pang Xiao-feng, Theory for Non-Linear Quantum Mechanics (Chinese Chongqing Press, Chongqing, 1994), p. 427 and 795; Soliton Physics (Sichuan Sci. Tech. Press, Chengdu, 2003), pp. 667; Pang Xiao-feng and Feng Yuan-ping, Quantum mechanics in nonlinear systems (World Scientific Publishing Co. New Jersey, 2005), pp. 557–586; Chin. Phys. Lett. 20, 1662 (2003); X.F. Pang et al., Commun. Theor. Phys. 43, 367 (2005) CrossRefGoogle Scholar
  44. X.F. Pang, Phys. Stat. Sol.(b) 236, 34 (2003); J. Shandong Normal Univ. Sin. (Nature) 15, 43 (2000); X.L. Yan, R.X. Dong, X.F. Pang, Commun. Theor. Phys. 35, 615 (2000) CrossRefADSGoogle Scholar
  45. X.F. Pang, J. Phys.: Condens. Matter 2, 9541 (1990); X.F. Pang, Eur. Phys. J. B 10, 415 (1999) and 12, 297 (2000); X.F. Pang, Phys. Rev. E 49, 4747 (1994) and E 62, 6989 (2000); X.F. Pang, Acta Math. Scienties 13 437 (1993); X.F. Pang, Chinese Phys. Lett. 10, 381 and 437 and 517 (1993); X.F. Pang, Chinese Science Bulletin 38, 1557 and 1665 (1993); X.F. Pang, Acta Physica Slovak 46, 89 (1998); X.F. Pang, J. Low. Temp. Phys. 58, 334 (1985) CrossRefADSGoogle Scholar
  46. A. Gordon, Physica B 146, 373 (1987); 150, 319 (1988); A. Gordon, Solid State Commun. 69, 1113 (1989) CrossRefGoogle Scholar
  47. E.S. Nylund, G.P. Tsironis, Phys. Rev. Lett. 66, 1886 (1991) CrossRefADSGoogle Scholar
  48. G.E. Walrafen, J. Chem. Phys. 36, 1035 (1962); G.E. Walrafen, J. Chem. Phys. 40, 3249 (1964); G.E. Walrafen, J. Chem. Phys. 44, 1546 (1966); G.E. Walrafen, J. Chem. Phys. 47, 114 (1967); G.E. Walrafen, J. Chem. Phys. 48, 244 (1968); G.E. Walrafen, J. Chem. Phys. 50, 560 (1969); 52, 4276 (1970); G.E. Walrafen, M.S. Hokmabadi, W.H. Yang, J. Chem. Phys. 85, 6964 (1986); G.E. Walrafen, M.R. Fisher, M.S. Hokmabadi, W.H. Yang, J. Chem. Phys. 85, 6970 (1986) CrossRefADSGoogle Scholar
  49. D. Eisenberg, W. Kauzann, the structure and properties of water (Oxford, London, 1969) Google Scholar
  50. F. Aliotta, M.P. Fontana, Optica Acta, 27, 931 (1980) Google Scholar
  51. S. Myneni, Y. Luo, L.A. Naslund, M. Cavalleri, L. Ojamae, H. Ogasawaea, A. Pelmenschikov, Ph. Wernet, P. Vaterlein, C. Heske, Z. Gussain, L.G.M. Pettersson, A.Nillsson, J. Phys.: Condens. Matter 14, L213 (2002) Google Scholar
  52. A.F. Huxley, Prog. Biophys. Biophys. Chem. 7, 235 (1957); A.F. Huxley, Nature 173, 971 (1954) Google Scholar
  53. A.D. Koutselose, J. Chem, Phys. 102, 7216 (1995) Google Scholar
  54. M.W. Evans, J. Chem. Phys. 76, 5473 (1982); M.W. Evans, J. Chem. Phys. 76, 5480 (1982); M.W. Evans, J. Chem. Phys. 77, 463 (1982); M.W. Evans, J. Chem. Phys. 78, 925 (1983); 87, 6040 (1987) CrossRefADSGoogle Scholar
  55. O.G. Mouritsen, Phys. Rev. B 18, 465 (1978); 22, 1127 (1980) CrossRefADSGoogle Scholar
  56. S. Chikazumi, Physics in High Magnetic Fields (Springer-Verlag, Belin, 1981) Google Scholar
  57. P.G. Kusalik, J. Chen, Phys. 103, 10174 (1995) Google Scholar
  58. J.C. Dwicki, et al., J. Am. Chem. Soc. 99, 7403 (1997) Google Scholar
  59. K. Binder, Applications of the Monte Carlo Method (Springer-Verlag, Berlin, 1984) Google Scholar
  60. V.N. Bingi, Biophysics 37, 502 (1992) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China and International Centre for Materials Physics, Chinese Academy of SciencesShenyangP.R. China

Personalised recommendations