Second-order analysis by variograms for curvature measures of two-phase structures

  • C. H. Arns
  • J. Mecke
  • K. Mecke
  • D. StoyanEmail author
Statistical and Nonlinear Physics


Second-order characteristics are important in the description of various geometrical structures occurring in foams, porous media, complex fluids, and phase separation processes. The classical second order characteristics are pair correlation functions, which are well-known in the context of point fields and mass distributions. This paper studies systematically these and further characteristics from a unified standpoint, based on four so-called curvature measures, volume, surface area, integral of mean curvature and Euler characteristic. Their statistical estimation is straightforward only in the case of the volume measure, for which the pair correlation function is traditionally called the two-point correlation function. For the other three measures a statistical method is described which yields smoothed surrogates for pair correlation functions, namely variograms. Variograms lead to an enhanced understanding of the variability of the geometry of two-phase structures and can help in finding suitable models. The use of the statistical method is demonstrated for simulated samples related to Poisson-Voronoi tessellations, for experimental 3D images of Fontainebleau sandstone and for two samples of industrial foams.


Foam Sandstone Euler Characteristic Pair Correlation Function Curvature Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Applications (John Wiley & Sons, Chichester, 1995) Google Scholar
  2. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002) Google Scholar
  3. R. Hilfer, Statistical Physics and Spatial Statistics - The Art of Analyzing and Modeling Spatial Structures and Pattern Formation, edited by K.R. Mecke, D. Stoyan, 554 Lect. Notes Phys. (Springer, Berlin, 2000) pp. 203–241 Google Scholar
  4. K.R. Mecke, Integralgeometrie in der Statistischen Physik: Perkolation, komplexe Flüssigkeiten und die Struktur des Universums (Harry Deutsch, Frankfurt, 1994) Google Scholar
  5. K. Mecke, Acta Physica Polonica B, 28, 1747 (1997) Google Scholar
  6. K.R. Mecke, Int. J. Mod. Phys. B 12, 861 (1998) CrossRefGoogle Scholar
  7. K.R. Mecke, Statistical Physics and Spatial Statistics - The Art of Analyzing and Modeling Spatial Structures and Pattern Formation, edited by K.R. Mecke, D. Stoyan, 554 Lect. Notes Phys. (Springer, Berlin, 2000) pp. 111–184 Google Scholar
  8. M. von Laue, Münchener Berichte (1912) p. 303 Google Scholar
  9. Lord Rayleigh, Proc. Roy. Soc. London Ser. A 84, 25 (1911) Google Scholar
  10. A. Guinier, Ann. Phys. 12, 161 (1939) Google Scholar
  11. P. Debye, H.R. Anderson, H. Brumberger, J. Appl. Phys. 28, 679 (1957) CrossRefGoogle Scholar
  12. G. Porod, Kolloid-Zeitschrift 125, 51; 108 (1952) CrossRefGoogle Scholar
  13. R. Kirste, G. Porod, Kolloid-Zeitschrift 184(1), 1 (1962) Google Scholar
  14. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, 1976) Google Scholar
  15. U. Sonntag, D. Stoyan, H. Hermann, Phys. Stat. Sol. 68, 281 (1981) Google Scholar
  16. P. Smith, S. Torquato, J. Comp. Phys. 76(1), 176 (1988) CrossRefGoogle Scholar
  17. K.R. Mecke, J. Stat. Phys. 102, 1343, (2001) CrossRefGoogle Scholar
  18. C.H. Arns, M.A. Knackstedt, K.R. Mecke, Phys. Rev. Lett. 91, 215506 (2003) CrossRefPubMedGoogle Scholar
  19. P.-M. König, R. Roth, K. Mecke, Phys. Rev. Lett. 93, 1–4 (2004) Google Scholar
  20. C.L.Y. Yeong, S. Torquato, Phys. Rev. E 57, 495 (1998) CrossRefGoogle Scholar
  21. C.L.Y. Yeong, S. Torquato, Phys. Rev. E 58, 224 (1998) CrossRefGoogle Scholar
  22. J.P. Chilès, P. Delfiner, Geostatistics. Modelling Spatial Uncertainity (J. Wiley and Sons, New York, 1999) Google Scholar
  23. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, Vol. 44 (Cambridge University Press, Cambridge, 1993) Google Scholar
  24. D.A. Klain, G.-C. Rota, Introduction to Geometric Probability (Cambridge University Press, Cambridge, 1997) Google Scholar
  25. A. Tscheschel, D. Stoyan, J. Microsc. 211, 80 (2003) CrossRefPubMedGoogle Scholar
  26. A. Bezrukov, M. Bargiel, D. Stoyan, Part. Part. Charact. 19, 111 (2002) CrossRefGoogle Scholar
  27. S. Torquato, G. Stell, J. Chem. Phys. 79, 1505 (1983) CrossRefGoogle Scholar
  28. M. Kerscher, K. Mecke, J. Schmalzing, C. Beisbart, T. Buchert, H. Wagner, Astron. Astrophys. 373, 1 (2001) CrossRefGoogle Scholar
  29. U. Brodatzki, K. Mecke, Computer Physics Communications 147, 218 (2002) CrossRefGoogle Scholar
  30. Arthur Sakellariou, T.J. Sawkins, T.J. Senden, A. Limaye, Physica A 339(1-2), 152 (2004) Google Scholar
  31. M. Saadatfar, M.A. Knackstedt, C H. Arns, A. Sakellariou, T. Senden, A.P. Sheppard, R.M. Sok, H. Steininger, W. Schrof, Physica A 339(1-2), 131, (2004) Google Scholar
  32. T. Mattfeldt, D. Stoyan, J. Microsc. 200(2), 158 (2000) CrossRefGoogle Scholar
  33. D. Marcotte, Computers & Geosciences 22(10), 1175 (1996) Google Scholar
  34. K. Koch, J. Ohser, K. Schladitz, Adv. Appl. Prob. 35, 603 (2003) CrossRefGoogle Scholar
  35. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 90 - The Art of Parallel Scientific Computing, Vol. II (Cambridge University Press, Cambridge, 1996) Google Scholar
  36. N.A. Seaton, E.D. Glandt, J. Chem. Phys. 85(9), 5262 (1986) CrossRefGoogle Scholar
  37. M. Knackstedt, C. Arns, M. Saadatfar, T. Senden, A. Sakellariou, A. Sheppard, R. Sok, W. Schrof, H. Steininger, Adv. Eng. Mat. 7(4), 238 (2005) CrossRefGoogle Scholar
  38. A.P. Sheppard, R.M. Sok, H. Averdunk, Physica A 339(1-2), 145 (2004) Google Scholar
  39. P. Spanne, J.F. Thovert, C.J. Jacquin, W.B. Lindquist, K.W. Jones, P.M. Adler, Phys. Rev. Lett. 73, 2001 (1994) CrossRefPubMedGoogle Scholar
  40. F.M. Auzerais, J. Dunsmuir, B.B. Ferrèol, N. Martys, J. Olson, T.S. Ramakrishnan, D.H. Rothman, L.M. Schwartz, Geophys. Res. Lett. 23(7), 705 (1996) CrossRefGoogle Scholar
  41. J.T. Fredrich, Phys. Chem. Earth (A) 24(7), 551 (1999) Google Scholar
  42. J.-F. Thovert, F. Yousefian, P. Spanne, C.G. Jacquin, P.M. Adler, Phys. Rev. E 63, 61307 (2001) CrossRefGoogle Scholar
  43. W.B. Lindquist, A. Venkatarangan, J. Dunsmuir, T.F. Wong, J. Geophys. Res. B 105, 21509 (2000) CrossRefGoogle Scholar
  44. C.H. Arns, M.A. Knackstedt, W. Val Pinczewski, W.B. Lindquist, Geophys. Res. Lett. 28(17), 3361 (2001) CrossRefGoogle Scholar
  45. C.H. Arns, M.A. Knackstedt, K.R. Mecke, Morphology of Condensed Matter — Physics and Geometry of spatially complex Systems, edited by K.R. Mecke, D. Stoyan, Lect. Notes Phys. 600 (Springer, Berlin, 2002) pp. 37–74 Google Scholar
  46. C.H. Arns, M.A. Knackstedt, W.V. Pinczewski, E.G. Garboczi, Geophys. 67(5), 1396 (2002) CrossRefGoogle Scholar
  47. C.H. Arns, M.A. Knackstedt, W.V. Pinczewski, N. Martys, J. Petr. Sc. Eng. 45(1-2), 41 (2004) Google Scholar
  48. W. Oh, W. Brent Lindquist, IEEE T. Patt. Anal. Machine Intelligence 21, 590 (1999) CrossRefGoogle Scholar
  49. W.B. Lindquist, A. Venkatarangan, Phys. Chem. Earth (A) 25, 593 (1999) Google Scholar
  50. D.J. Bergman, K.-J. Dunn, L.M. Schwartz, P.P. Mitra, Phys. Rev. E 51, 3393 (1995) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Applied MathematicsResearch School of Physical Sciences and Engineering, Australian National UniversityCanberraAustralia
  2. 2.Institut für Stochastik, Friedrich-Schiller-Universität JenaJenaGermany
  3. 3.Institut für Theoretische Physik Universität Erlangen-NürnbergErlangenGermany
  4. 4.Institut für StochastikFreibergGermany

Personalised recommendations