Advertisement

Zero temperature dynamics of Ising model on a densely connected small world network

  • Pratap Kumar Das
  • Parongama SenEmail author
Statistical and Nonlinear Physics

Abstract.

The zero temperature quenching dynamics of the ferromagnetic Ising model on a densely connected small world network is studied where long range bonds are added randomly with a finite probability p. We find that in contrast to the sparsely connected networks and random graph, there is no freezing and an initial random configuration of the spins reaches the equilibrium configuration within a very few Monte Carlo time steps in the thermodynamic limit for any p ≠0. The residual energy and the number of spins flipped at any time shows an exponential relaxation to equilibrium. The persistence probability is also studied and it shows a saturation within a few time steps, the saturation value being 0.5 in the thermodynamic limit. These results are explained in the light of the topological properties of the network which is highly clustered and has a novel small world behaviour.

Keywords

Ising Model Random Graph Thermodynamic Limit Residual Energy Small World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Watts, S.H. Strogatz, Nature, 393, 440 (1998) Google Scholar
  2. M.E.J. Newman, D.J. Watts, Phys. Rev. E 60, 7332 (1999) CrossRefGoogle Scholar
  3. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) CrossRefGoogle Scholar
  4. A. Barrat, M. Weigt, Eurphys. J. B 13, 547 (2000) Google Scholar
  5. M. Gitterman, J. Phys.A 33, 8373 (2000) CrossRefGoogle Scholar
  6. B.J. Kim et al., Phys. Rev. E 64, 056135 (2001) CrossRefGoogle Scholar
  7. C.P. Herrero, Phys. Rev. E 65, 066110 (2002) CrossRefGoogle Scholar
  8. H. Hong, B.J. Kim, M.Y Choi, Phys. Rev. E 66, 011107 (2002) CrossRefGoogle Scholar
  9. J. Viana Lopes, Yu. G. Pogorelov, J.M.B. Lopes dos Santos, R. Toral, Phys. Rev. E 70 026112 (2004) Google Scholar
  10. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E 66, 016104 (2002) CrossRefGoogle Scholar
  11. M. Leone, A. Vazquez, A. Vespignani, R. Zecchina, Eur. Phys. J. B 28, 191 (2002) CrossRefGoogle Scholar
  12. A. Aleksiejuk, J.A. Holyst, D. Stauffer, Physica A 310, 260 (2002); G. Bianconi, Phys. Lett. A 303, 166 (2002); J. Viana Lopes, Yu. G. Pogorelov, J.M.B. Lopes dos Santos, R. Toral, Phys. Rev. E 70, 026112 (2004) CrossRefGoogle Scholar
  13. P. Svenson, Phys. Rev. E 64, 036122 (2001) CrossRefGoogle Scholar
  14. O. Haggstrom, Physica A 310, 275 (2002) CrossRefGoogle Scholar
  15. D. Boyer, O. Miramontes, Phys. Rev. E 67, R035102 (2003) Google Scholar
  16. P. Svenson, D.A. Johnson, Phys. Rev. E 65, 036105 (2002) CrossRefGoogle Scholar
  17. J.Y. Zhu, H. Zhu, Phys. Rev. E 67, 026125 (2003) CrossRefGoogle Scholar
  18. D. Jeong, M.Y. Choi, H. Park, Phys. Rev. E 71, 036103 (2005) CrossRefGoogle Scholar
  19. C. Castellano, V. Loreto, A. Barrat, F. Cecconi, D. Parisi, Phys. Rev. E 71 066107 (2005) Google Scholar
  20. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977) CrossRefGoogle Scholar
  21. J.D. Gunton, M. San Miguel, P.S. Sahni, Phase Transitions and critical phenomena, Vol. 8, edited by C. Domb, J.L. Lebowitz (Academic, NY, 1983) Google Scholar
  22. A.J. Bray, Adv. Phys. 43, 357 (1994) and the references therein Google Scholar
  23. For a review, see S.N. Majumdar, Curr. Sci. 77, 370 (1999) Google Scholar
  24. B. Derrida, A.J. Bray, C. Godreche, J. Phys. A 27, L357 (1994) Google Scholar
  25. D. Stauffer, J. Phys. A 27, 5029 (1994) CrossRefGoogle Scholar
  26. P.L. Krapivsky, E. Ben-Naim, S. Redner, Phys. Rev. E 50, 2474 (1994) CrossRefGoogle Scholar
  27. V. Spirin, P.L. Krapivsky, S. Redner, Phys. Rev. E 63, 036118 (2001) CrossRefGoogle Scholar
  28. B. Derrida, Phys. Rev. E 55, 3705 (1997) CrossRefGoogle Scholar
  29. P.L. Krapivsky, E. Ben-Naim, Phys. Rev. E 56, 3788 (1997) CrossRefGoogle Scholar
  30. N.R. da Silva, J.M. Silva, Phys. Lett. A 135, 373 (1989) CrossRefGoogle Scholar
  31. Tao Zhou, Bing-Hong Wang, P.M. Hui, K.P. Chan, e-print: arXiv: cond-mat/0405258; in the first version of this paper the authors used the term “super small world" Google Scholar
  32. P. Sen, K. Banerjee, T. Biswas, Phys. Rev. E 66, 037102 (2002) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CalcuttaKolkataIndia

Personalised recommendations