Conduction mechanism and magnetoresistance in Gd1-xPrxBaCaCu3O7-δ

  • M. Kariminezhad
  • M. AkhavanEmail author
Solid and Condensed State Physics


Tetragonal Gd1-xPrxBaCaCu3O7-δ (0≤x≤1) polycrystalline samples have been prepared by the standard solid-state reaction, and characterized by XRD and SEM. Rietveld analysis on X-ray diffraction pattern shows site mixing between rare earth (R) and Ca. Contrary to Gd1-xPrxBa2Cu3O7-δ, a hump on the ρ(T) curve is observed at about 80 K. The normal state resistivity has been analyzed by the two and three dimensional variable range hopping (2&3D-VRH) and Coulomb gap. For low concentration of Pr (x<0.5–0.6, corresponding to the metal-insulator transition), 2D-VRH is the dominant mechanism, but with the increase of x, the 3D-VRH is dominant. Substitution of Ba by Ca highly increases the superconducting granularity. The magnetoresistance measurements have been analyzed by the Ambegaokar and Halperin phase slip model. The field dependences of the pinning energy and critical current density have been studied for different amounts of Pr doping.


Neural Network Rare Earth Variable Range Field Dependence Critical Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Akhavan, Phys. B 321, 265 (2002) Google Scholar
  2. V.P.S Awana, J. Horvat, S.X. Dou, A. Sedky, A.V. Narlikar, J. Magn. Magn. Mater. 182, L280 (1998) Google Scholar
  3. M. Akhavan, Phys. Stat. Sol. (b) 241, 1242 (2004) CrossRefGoogle Scholar
  4. G. Zhao, A.P.B. Zinha, D.E. Morris, Phys. C 297, 23 (1998) Google Scholar
  5. D.R. Mueller, J.S. Wallace, J.J. Jia, W.L. O’Brien, Q.Y. Dong, T.A. Callcott, K.E. Miyano, D.L. Ederer, Phys. Rev. B 52, 9702 (1995) CrossRefGoogle Scholar
  6. M. Kariminezhad, H. Khosroabadi, M. Akhavan, Phys. Stat. Sol. ( c) 1, 1855 (2004) Google Scholar
  7. Z. Yamani, M. Akhavan, Solid State Commun. 107, 197 (1998) CrossRefGoogle Scholar
  8. V.P.S. Awana, C.A. Cardoso, O.F. de Lima, R. Singh, A.V. Narlikar, W.B. Yelon, S.K. Malik, Phys. C 316, 113 (1999) Google Scholar
  9. X.Z. Wang, D. Bäuerle, Phys. C 176, 507 (1991) Google Scholar
  10. V.P.S. Awana, S.X. Dou, S.K. Malik, R. Singh, A.V. Narlikar, D.A. Landinez Tellez, J.M. Ferreira, J. Albino Aguiar, S. Uma, E. Gmelin, W.B. Yelon, J. Magn. Magn. Mater. 187, 192 (1998) CrossRefGoogle Scholar
  11. R. Ganguly, I.K. Gopalakrishnan, J.V. Yakhmi, Phys. C 256, 51 (1996) Google Scholar
  12. M. Kariminezhad, M. Akhavan, submitted for publication by J. Supercond. (2005) Google Scholar
  13. J.L. Peng, P. Klavins, R.N. Shelton, H.B. Radousky, P.A. Hahn, L. Bernardez, Phys. Rev. B 40, 4517 (1989) CrossRefGoogle Scholar
  14. G. Cao, Y. Qian, Z. Chen, X. Li, H. Wu, Y. Zhang, Phys. Lett. A 196, 263 (1994) Google Scholar
  15. M.R. Mohammadizadeh, M. Akhavan, Phys. Rev. B 68, 104516 (2003) CrossRefGoogle Scholar
  16. Z. Zou, J. Ye, K. Oka, Y. Nishihara, Phys. Rev. Lett. 80, 1074 (1998) CrossRefGoogle Scholar
  17. V.N. Narozhnyi, S.-L. Drechsler, Phys. Rev. Lett. 82, 461 (1999) CrossRefGoogle Scholar
  18. M.R. Mohammadizadeh, M. Akhavan, Eur. Phys. J. B 33, 381 (2003) Google Scholar
  19. M.R. Mohammadizadeh, M. Akhavan, Phys. B 336, 410 (2003) Google Scholar
  20. M.R. Mohammadizadeh, M. Akhavan, Supercond. Sci. Technol. 16, 1216 (2003) CrossRefGoogle Scholar
  21. V. Ambegaokar, B.I. Halperin, Phys. Rev. Lett. 22, 1364 (1969) CrossRefGoogle Scholar
  22. H. Shakeripour, M. Akhavan Supercond. Sci. Technol. 14, 234 (2001) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics, Sharif University of TechnologyMagnet Research Laboratory (MRL)TehranIran

Personalised recommendations