Origin of superenhanced light transmission through two-dimensional subwavelength rectangular hole arrays

Solid and Condensed State Physics


Superenhanced light transmission through subwavelength rectangular hole arrays have been reported and some investigations have been made into the physical origin of this phenomenon [K.J. Klein Koerkamp et al., Phys. Rev. Lett. 92, 183901 (2004)]. In our current work, by performing FDTD (finite difference in the time domain) numerical simulations, we demonstrate that mechanism that is different from surface plasmon polaritons set up by the periodicity at the in-plane metal surfaces may account for this superenhanced light transmission. We suggest that for arrays of rectangular holes with small enough width in comparison to the wavelength of the incident light, standing electromagnetic fields can be set up inside the cavity by the surface plasmons on the hole walls with its intensity being substantially enhanced inside the cavity. So resonant cavity-enhanced light transmission is predominant and responsible for its superenhanced light transmission. Rectangular holes behave as Fabry-Pérot resonance cavities except that the frequency of their fundamental modes is restricted by their TM cutoff frequency. However we believe that both localized surface plasmon modes and surface plasmon polaritons set up by the periodicity at the in-plane metal surfaces have their shares in extraordinary optical transmission of rectangular hole arrays especially when the width of the rectangular hole is not small enough and the metal film is not thick enough.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998) CrossRefGoogle Scholar
  2. H.F. Ghaemi, Tineke Thio, D.E. Grup, T.W. Ebbesen, H.J. Lezec, Phys. Rev. B 58, 6779 (1998) CrossRefGoogle Scholar
  3. D.E. Grupp, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, Tineke Thio, Appl. Phys. Lett. 77, 1569 (2000) CrossRefGoogle Scholar
  4. W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004) CrossRefPubMedGoogle Scholar
  5. M.B. Sobnack, W.C. Tan, N.P. Wanstall, T.W. Preist, J.R. Sambles, Phys. Rev. Lett. 80, 5667 (1998) CrossRefGoogle Scholar
  6. J.A. Porto, F.J. Garcý a-Vidal, J.B. Pendry, Phys. Rev. Lett. 83, 2845 (1999) Google Scholar
  7. S. Astilean, Ph. Lalanne, M. Palamaru, Opt. Commun. 175, 265 (2000) CrossRefGoogle Scholar
  8. Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001) CrossRefPubMedGoogle Scholar
  9. K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004) CrossRefPubMedGoogle Scholar
  10. A. Degiron et al., Opt. Commun. 239, 61 (2004) CrossRefGoogle Scholar
  11. A. Degiron, T.W. Ebbesen, J. Opt. A: Pure Appl. Opt. 7, S90 (2005) Google Scholar
  12. A. Degiron, H.J. Lezec, W.L. Barnes, T.W. Ebbesen, Appl. Phys. Lett. 81, 4327 (2002) Google Scholar
  13. A.J. Ward, J.B. Pendry, Comput. Phys. Commun. 128, 590 (2000) CrossRefGoogle Scholar
  14. F.I. Baida, D. Van Labeke, Phys. Rev. B 67, 155314 (2003) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Surface Physics Laboratory and Department of Physics, Fudan UniversityShanghaiP.R. China

Personalised recommendations