Position control and optical manipulation for nanotechnology applications

Solid and Condensed State Physics


During the last decade, great advances have been made concerning the construction and manipulation of nanostructures. As a consequence, nanometer stability and control of the sample position have became crucial points. For this purpose, we have built an optical microscope with high mechanic stability and we have implemented a feedback system in order to compensate thermal drifts. We demonstrate the system stability to be within one nanometer, with a control on the sample position of some micrometers, along the three spatial directions. The sample can be manipulated optically by means of a multiple optical tweezers setup and its displacements measured with a 3D position detector. We discuss and characterize the system properties thoroughly. We finally test the apparatus on a bio-molecular system constituted by a single myosin motor interacting with an actin filament.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.K. Gimzewski, C. Joachim, Science 283, 1683 (1999) CrossRefPubMedGoogle Scholar
  2. D.G. Grier, Nature 424, 810 (2003) CrossRefPubMedGoogle Scholar
  3. J. James, Light microscopic techniques in biology and medicine (The Netherlands, Amsterdam 1976), pp. 75 Google Scholar
  4. R.E. Thompson, D.R. Larson, W.W. Webb, Biophys. J. 82, 2775 (2002) PubMedGoogle Scholar
  5. R.N. Ghosh, W.W. Webb, Biophys. J. 66, 1301 (1994) PubMedGoogle Scholar
  6. U. Kubitscheck, O. Kuckmann, T. Kues, R. Peters, Biophys. J. 78, 2170 (2000) PubMedGoogle Scholar
  7. M. Goulian, S.M. Simon, Biophys. J. 79, 2188 (2000) PubMedGoogle Scholar
  8. L. Finzi, J. Gelles, Science 78, 378 (1995) Google Scholar
  9. W.H. Hell, Nature Biotechnology 21, 1347 (2003) CrossRefPubMedGoogle Scholar
  10. A.D. Metha, M. Rief, J.A. Spudich, D.A. Smith, R.M. Simmons, Science 283, 1689 (1999) CrossRefPubMedGoogle Scholar
  11. I.M. Toliç-Nørrelykke, L. Sacconi, G. Thon, F.S. Pavone, Current Biology 14, 1181 (2004) CrossRefPubMedGoogle Scholar
  12. L. Sacconi, I.M. Toliç-Nørrelykke, R. Antolini, F.S. Pavone, J. Biomed. Opt. 10, 014002 (2005) CrossRefGoogle Scholar
  13. P. Galajda, P. Ormos, Appl. Phys. Lett. 78, 249 (2001) CrossRefGoogle Scholar
  14. J. Plewa, E. Tanner, D.M. Mueth, D. Grier, Optics Express 12, 1978 (2004) CrossRefGoogle Scholar
  15. C. Mio, T. Gong, A. Terray, D.W.M. Marr, Fluid Phase Equilibria 185, 157 (2001) CrossRefGoogle Scholar
  16. J. Won, T. Inaba, H. Masuhara, H. Fujiwara, K. Sasaki, S. Miawaki, S. Sato, Appl. Phys. Lett. 75, 1506 (1999) CrossRefGoogle Scholar
  17. M.J. Lang, C.L. Asbury, J.W. Shaevitz, S.M. Block, Biophys. J. 83, 491 (2002) PubMedGoogle Scholar
  18. W. Steffen, D. Smith, R. Simmons, J. Sleep, PNAS 98, 14949 (2001) CrossRefPubMedGoogle Scholar
  19. F. Gittes, C.F. Schmidt, Optics Lett. 23, 7 (1998) Google Scholar
  20. A.E. De Barr, Automatic control. An introduction to the theory of feedback and feedback control system (Chapman and Hall, London 1962) Google Scholar
  21. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc. Publishers. Sunderland, Massachussetts, 2001) Google Scholar
  22. J.T. Finer, R.M. Simmons, J.A. Spudich, Nature 368, 113 (1994) CrossRefPubMedGoogle Scholar
  23. D.A. Smith, W. Steffen, R.M. Simmons, J. Sleep, Biophys. J. 81, 2795 (2001) PubMedGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Italy and Dipartimento di Biologia Animale e Genetica “Leo Pardi”LENS, Via Nello Carrara 1, 50019 Sesto Fiorentino, FirenzeFirenzeItaly
  2. 2.LENS, Via Nello Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy and Dipartimento di Fisica-Università degli Studi di FirenzeFirenzeItaly

Personalised recommendations