Uncompensated antiferromagnetic structure of Ho2Ni2Pb

  • K. ProkešEmail author
  • E. Muñoz Sandoval
  • A. D. Chinchure
  • J. A. Mydosh
Solid and Condensed State Physics


We have studied the magnetic structure of the orthorhombic compound Ho2Ni2Pb by means of neutron diffraction in zero field and in magnetic fields up to 4.5 T. Both powder and single-crystalline samples were used. Previous bulk measurements suggest two distinct magnetic phase transitions: one at TN = 7.0 K and the other at 4.8 K. Our neutron diffraction measurements, which were made in the range 1.5-20 K, showed that Ho2Ni2Pb has a collinear magnetic structure with unequal number of up and down Ho moments that are aligned parallel and antiparallel to the c axis. At the lowest temperatures the Ho moments are equal in size, each 8.3 μB in agreement with magnetization data. The magnetic structure can be described as having a 5a ×b ×c magnetic unit cell. Below Ts = 3.0 K the structure is squared up. A smooth development of all the magnetic moment magnitudes indicates that the magnetic structure remains in principle the same over the whole temperature range, the “phase transition” around 4.8 K can be identified as an inflection point in the temperature dependence of one of the Ho moments. With increasing temperature there is a clear development towards a simple transverse sine-wave modulated magnetic structure that is established just below TN.


Phase Transition Neutron Diffraction Magnetic Structure Magnetic Phase Moment Magnitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Handbook of Magnetic Materials, Vols. 1–13, edited by K.H.J. Buschow (Elsevier North Holland, Amsterdam, (1980-2001) Google Scholar
  2. L.D. Gulay, Y.M. Kalychak, M. Wolcyrz, J. Alloys Compd. 311, 228 (2000)Google Scholar
  3. L.D. Gulay, K. Hiebl, J. Alloys Compd. 351, 35 (2003)Google Scholar
  4. A.D. Chinchure, E. Muñoz-Sandoval, J.A. Mydosh, Phys. Rev. B 66, 020409(R) (2002)Google Scholar
  5. J.L. Daams et al., Atlas of Crystal Structure Types for Intermetallic Phases (ASM International, 1991) Google Scholar
  6. A.D. Chinchure, E. Muñoz-Sandoval, J.A. Mydosh, Phys. Rev. B 64, 020404(R) (2001)Google Scholar
  7. E. Muñoz-Sandoval, A.D. Chinchure, R.W.A. Hendrikx, J.A. Mydosh, Europhys. Lett. 56, 302 (2001)Google Scholar
  8. A.D. Chinchure, E. Muñoz-Sandoval, T.J. Gortenmulder, R.W.A. Hendrikx, J.A. Mydosh, J. Alloys Compd. 359, 5 (2003)Google Scholar
  9. K. Prokeš, E. Muñoz-Sandoval, A.D. Chinchure, J.A. Mydosh, Phys. Rev. B 68, 134427 (2003)Google Scholar
  10. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)Google Scholar
  11. T. Roisnel, J. Rodriguez-Charvajal, WinPLOTR (May 2003) computer code, unpublished Google Scholar
  12. V.F. Sears, Neutron News 3, 26 (1992)Google Scholar
  13. L.D. Gulay, K. Hiebl, J. Alloys Compd. 339, 46 (2002)Google Scholar
  14. E. Muñoz-Sandoval, A. Díaz-Ortiz, A.D. Chinchure, J.A. Mydosh, J. Alloys Compd. 369, 260 (2004)Google Scholar
  15. J. Rossat-Mignod, in Neutron Physics, Vol. 23C, edited by K. Skold, D.L. Price (Academic Press, 1987), p. 69 Google Scholar
  16. E.F. Bertaut, Acta Crystallogr. A 24, 217 (1968)Google Scholar
  17. S. Daniš, K. Prokeš, E. Muñoz-Sandoval, A.D. Chinchure, J.A. Mydosh (2003), unpublished Google Scholar
  18. W. Suski, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 22, Chap. 146, edited by K.A. Gschneidner Jr., L. Eyring (Elsevier Science, Amsterdam, 1996), p. 143 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • K. Prokeš
    • 1
    Email author
  • E. Muñoz Sandoval
    • 2
  • A. D. Chinchure
    • 3
  • J. A. Mydosh
    • 4
  1. 1.Hahn-Meitner-InstituteBerlinGermany
  2. 2.Advanced Materials DepartmentSan Luis Potosi SLPMexico
  3. 3.Materials Research LaboratoryBangalore -India
  4. 4.Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands and Max-Planck-Institute for Chemical Physics of SolidsDresdenGermany

Personalised recommendations