Hydrogen desorption from ball milled MgH2 catalyzed with Fe

  • A. Bassetti
  • E. Bonetti
  • L. Pasquini
  • A. Montone
  • J. Grbovic
  • M. Vittori Antisari
Solid and Condensed State Physics

Abstract.

In order to obtain faster hydrogen sorption kinetics, MgH2-Fe nanocomposites were prepared by high-energy ball milling. The MgH2 decomposition was studied in samples obtained by changing in a systematic way both the catalyst amount and the degree of microstructural refinement. To this purpose, blends containing increasing Fe concentration have been ball milled in processing conditions able to impart different amount of structural defects. The resulting samples have been characterized by X-ray diffraction to investigate the microstructural features and the phase composition, while the powder morphology and the degree of catalyst dispersion were analyzed by scanning electron microscopy. Differential scanning calorimetry was carried out to characterize the hydrogen desorption behavior of these nanocomposites. Experimental results clearly show that the characteristics of the desorption process are dominated, among other factors, by the morphology of the catalyst dispersion, which in turns depends on the processing conditions and blend composition. In order to achieve low desorption temperatures the homogeneous catalyst dispersion in micron-size particles throughout the structure is required. This condition can be achieved by suitable tuning of the milling conditions and of the catalyst amount.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.C. Koch, O.B. Cavin, C.G. Mckamey, J.O. Scarborough, Appl. Phys. Lett. 43, 1017 (1983)CrossRefMATHADSGoogle Scholar
  2. R.B. Schwarz, W.L. Johnson, Phys. Rev. Lett. 51, 415 (1983) ADSGoogle Scholar
  3. J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, J. Alloys Comp. 293–295, 495 (1999) Google Scholar
  4. F.C. Gennari, F.J. Castro, G. Urretavizcaya, J. Alloys Comp. 321, 46 (2001) Google Scholar
  5. A. Zaluska, L. Zaluski, J.O. Ström-Olsen, J. Alloys Comp. 288, 217 (1999) Google Scholar
  6. L. Kanoya, M. Hosoe, T. Suzuki, Honda R&D Tech. Rev. 14, 9 (2002) Google Scholar
  7. W. Oelerich, T. Klassen, R. Bormann, J. Alloys Comp. 315, 237 (2001)Google Scholar
  8. M. Terzieva, M. Khrussanova, P. Peshev, J. Alloys Comp. 267, 235 (1998) Google Scholar
  9. G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Comp. 297, 261 (2000) Google Scholar
  10. G. Liang, E. Wang, S. Fang, J. Alloys Comp. 223, 111 (1995) Google Scholar
  11. P. Wang, A. Wang, H. Zhang, B. Ding, Z. Hu, J. Alloys Comp. 297, 240 (2000) Google Scholar
  12. L. Zaluski, A. Zaluska, J.O. Ström-Olsen, J. Alloys Comp. 253, 70 (1997) Google Scholar
  13. G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Comp. 292, 247 (1999)Google Scholar
  14. J.-L. Bobet, E. Akiba, Y. Nakamura, B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000)Google Scholar
  15. N. Burgio, A. Iasonna, M. Magini, S. Martelli, F. Padella, Il Nuovo Cimento D 13, 459 (1991)ADSGoogle Scholar
  16. L. Lutterotti, P. Scardi, J. Appl. Crystallogr. 23, 246 (1990)Google Scholar
  17. J. Huot, S. Boily, E. Akiba, R. Schulz, J. Alloys Comp. 280, 306 (1998) Google Scholar
  18. A. Bassetti, E. Bonetti, A.L. Fiorini, J. Grbovi ae , A. Montone, L. Pasquini, M. Vittori Antisari, Mat. Sci. Forum 453-454, 205 (2004) Google Scholar
  19. A. Zaluska, A. Zaluski, J.O. Ström-Olsen, Appl. Phys. A 72, 157 (2001)CrossRefADSGoogle Scholar
  20. M.T. Hagström, P.D. Lund, Thermochimica Acta 298, 141 (1997)Google Scholar
  21. G. Barkhordarian, T. Klassen, R. Bormann, J. Alloys Comp. 364, 242 (2004)Google Scholar
  22. S. Dal Toè, S. Lo Russo, A. Maddalena, G. Principi, A. Saber, S. Sartori, T. Spataru, Mater. Sci. Eng. B 108, 24 (2004)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • A. Bassetti
    • 1
  • E. Bonetti
    • 1
  • L. Pasquini
    • 1
  • A. Montone
    • 2
  • J. Grbovic
    • 2
  • M. Vittori Antisari
    • 2
  1. 1.Department of PhysicsUniversity of Bologna and INFMBolognaItaly
  2. 2.Materials and Technology Unit, ENEA C.R. CasacciaRomaItaly

Personalised recommendations