Advertisement

The Gutzwiller wave function as a disentanglement prescription

Article

Abstract.

The Gutzwiller variational wave function is shown to correspond to a particular disentanglement of the thermal evolution operator, and to be physically consistent only in the temperature range \(U\ll kT\ll E_F\), the Fermi energy of the non-interacting system. The correspondence is established without using the Gutzwiller approximation. It provides a systematic procedure for extending the ansatz to the strong-coupling regime. This is carried out to infinite order in a dominant class of commutators. The calculation shows that the classical idea of suppressing double occupation is replaced at low temperatures by a quantum RVB-like condition, which involves phases at neighboring sites. Low-energy phenomenologies are discussed in the light of this result.

Keywords

Spectroscopy Neural Network Wave Function Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.D. Mahan, Many-particle physics (Plenum, 1990)Google Scholar
  2. 2.
    R.P. Feynman, Phys. Rev. 94, 262 (1954)Google Scholar
  3. 3.
    R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)Google Scholar
  4. 4.
    M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965)Google Scholar
  5. 5.
    R. Jastrow, Phys. Rev. 98, 1479 (1955)Google Scholar
  6. 6.
    W.L. McMillan, Phys. Rev. 175, 266 (1968)Google Scholar
  7. 7.
    W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)CrossRefGoogle Scholar
  8. 8.
    T. Ogawa, K. Kanda, T. Matsubara, Prog. Theor. Phys. 53, 614 (1975)Google Scholar
  9. 9.
    P. Fulde, Electron correlations in molecules and solids (Springer, 1993)Google Scholar
  10. 10.
    A.J. Millis, S.N. Coppersmith, Phys. Rev. B 43, 13770 (1991)Google Scholar
  11. 11.
    N. Bourbaki, Lie Groups and Lie Algebras, Part I (Hermann and Addison-Wesley, Paris and Reading, 1975), exercises for Ch. II 6Google Scholar
  12. 12.
    A.B. Harris, R.V. Lange, Phys. Rev. 157, 295 (1967)Google Scholar
  13. 13.
    F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)CrossRefGoogle Scholar
  14. 14.
    P.W. Anderson, Science 235, 1196 (1987)Google Scholar
  15. 15.
    P. Phillips, D. Galanakis, T.D. Stanescu, Breakdown of strong-coupling perturbation theory in doped Mott insulators (2004), cond-mat/0312615Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations