Advertisement

Scaling the \(\alpha \)-relaxation time of supercooled fragile organic liquids

  • C. DreyfusEmail author
  • A. Le Grand
  • J. Gapinski
  • W. Steffen
  • A. Patkowski
Article

Abstract.

It was shown recently [1] that the structural \(\alpha \)-relaxation time \(\tau \) of supercooled o-terphenyl depends on a single control parameter \(\Gamma \), which is the product of a function of density \(E(\rho )\), by the inverse temperature T -1. We extend this finding to other fragile glassforming liquids using light scattering data. Available experimental results do not allow to discriminate between several analytical forms of the function \(E(\rho )\), the scaling arising from the separation of density and temperature in \(\Gamma \). We also propose a simple form for \(\tau (\Gamma )\), which depends only on three material-dependent parameters, reproducing relaxation times over 12 orders of magnitude.

Keywords

Spectroscopy Neural Network State Physics Relaxation Time Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Dreyfus, A. Aouadi, J. Gapinski, M. Matos-Lopes, W. Steffen, A. Patkowski, R.M. Pick, Phys. Rev. E 68, 011204 (2003)Google Scholar
  2. 2.
    C.A. Angell, J. Non-Cryst. Solids 73, 1 (1985)Google Scholar
  3. 3.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)Google Scholar
  4. 4.
    M.H. Cohen, G.S. Grest, Phys. Rev. B 20, 1077 (1979)Google Scholar
  5. 5.
    R.L. Cook, H.E. King Jr., C.A. Herbst, D.R. Herschbach, J. Chem. Phys. 100, 5178 (1994)Google Scholar
  6. 6.
    K.U. Schug, H.E. King Jr., R. Böhmer, J. Chem. Phys. 109, 1472 (1998)Google Scholar
  7. 7.
    G. Fytas, Th. Dorfmuller, C.H. Wang, J. Phys. Chem. 87, 5041 (1983)Google Scholar
  8. 8.
    M. Paluch, C.M. Roland, J. Gapinski, A. Patkowski, J. Chem. Phys. 118, 3177 (2003) and references hereinGoogle Scholar
  9. 9.
    M. Paluch, A. Patkowski, E.W. Fischer, Phys. Rev. Lett. 85, 2140 (2000)Google Scholar
  10. 10.
    M. Paluch, J. Gapinski, A. Patkowski, E.W. Fischer, J. Chem. Phys. 114, 8048 (2001)Google Scholar
  11. 11.
    A. Patkowski, M. Matos-Lopes, E.W. Fischer, J. Chem. Phys. 119, 1579 (2003)Google Scholar
  12. 12.
    A. Patkowski, M. Paluch, H. Kriegs, J. Chem. Phys. 117, 2192 (2002)Google Scholar
  13. 13.
    M. Paluch, R. Casalini, A. Best, A. Patkowski, J. Chem. Phys. 117, 7624 (2002)Google Scholar
  14. 14.
    J. Gapinski, M. Paluch, A. Patkowski, Phys. Rev. E 66, 11501 (2002)Google Scholar
  15. 15.
    G. Li, H.E. King Jr., W.F. Oliver, C.A. Herbst, H.Z. Cummins, Phys. Rev. Lett. 74, 2280 (1995)Google Scholar
  16. 16.
    M. Naoki, H. Endou, K. Matsumoto, J. Phys. Chem. 91, 4169 (1987)Google Scholar
  17. 17.
    R. Casalini, M. Paluch, C.M. Roland, Phys. Rev. E 67, 31505 (2003)Google Scholar
  18. 18.
    M. Paluch, C.M. Roland, R. Casalini, G. Meier, A. Patkowski, J. Chem. Phys. 118, 4578 (2003)Google Scholar
  19. 19.
    M. Paluch, J. Chem. Phys. 115, 10029 (2001)Google Scholar
  20. 20.
    A. Tölle, Rep. Prog. Phys. 64, 1473 (2001); A. Tölle, H. Schober, J. Wuttke, O.G. Randl, F. Fujura, Phys. Rev. Lett. 80, 2374 (1998). Note that the scaling of S(q,t) described in both papers was observed over a limited time domain by neutron spin echo, but \(S(q,\omega)\) measured in the equivalent frequency domain by depolarized light scattering did not show the same scaling [11]Google Scholar
  21. 21.
    C. Alba-Simionesco, A. Cailliaux, A. Alegria, G. Tarjus, cond-mat/0404040, Europhys. Lett. 68, 58 (2004); C.M. Roland, R. Casalini, cond-mat/0404181, J. Chem. Phys. 120, 10640 (2004)Google Scholar
  22. 22.
    R. Casalini, C.M. Roland, cond-mat/0403622, Phys. Rev. E 69, 062501 (2004)Google Scholar
  23. 23.
    C. Alba-Simionesco, D. Kivelson, G. Tarjus, J. Chem. Phys. 116, 5033 (2002)Google Scholar
  24. 24.
    G. Tarjus, D. Kivelson, S. Mossa, C. Alba-Simionesco, cond-mat/0309579, J. Chem. Phys. 120, 6135 (2004)Google Scholar
  25. 25.
    A. Patkowski, J. Gapinski, G. Meier, Coll. Polym. Sci. 282, 874 (2004)Google Scholar
  26. 26.
    M. Paluch, C.M. Roland, A. Best, J. Chem. Phys. 117, 1188 (2002); S. Kahle, J. Gapinski, G. Hinze, A. Patkowski, G. Meier, in preparationGoogle Scholar
  27. 27.
    M. Naoki, S. Koeda, J. Phys. Chem. 93, 948 (1989)Google Scholar
  28. 28.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press, London, 1990)Google Scholar
  29. 29.
    a) F.J. Stickel, E.W. Fischer, A. Schonhals, F. Freuer, Phys. Rev. Lett. 73, 2936 (1994); b) F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 102, 6251 (1995); F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 104, 2043 (1996); c) F. Stickel, F.T. Berger, R. Richert, E.W. Fischer, J. Chem. Phys. 107, 1086 (1997)Google Scholar
  30. 30.
    E. Eckstein, J. Quian, R. Hentschke, T. Thurn-Albrecht, W. Steffen, E.W. Fischer, J. Chem. Phys. 113, 4751 (2000)Google Scholar
  31. 31.
    C. Hansen, F. Stickel, R. Richert, E.W. Fischer, J. Chem. Phys. 108, 6408 (1998)Google Scholar
  32. 32.
    F.J. Stickel, Ph.D. Dissertation, Johannes-Gutenberg University, Mainz, Germany (1995)Google Scholar
  33. 33.
    W. Steffen, A. Patkowski, H. Gläser, G. Meier, E.W. Fischer, Phys. Rev. E 49, 2992 (1994); W. Steffen, B. Zimmer, A. Patkowski, G. Meier, E.W. Fischer, J. Non-Cryst. Solids 172-174, 37 (1994)Google Scholar
  34. 34.
    S. Sastry, cond-mat/012054, Phys. Chem. Comm. 14, U79 (2000)Google Scholar
  35. 35.
    R. Boehmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993)Google Scholar
  36. 36.
    H. Schlosser, J. Ferrante, J. Phys.: Condens. Matter. 1, 2727 (1989)Google Scholar
  37. 37.
    M. Paluch, private communicationGoogle Scholar
  38. 38.
    D. Huang, G.B. McKenna, J. Chem. Phys. 114, 5621 (2001)Google Scholar
  39. 39.
    M. Paluch, R. Casalini, S. Hensel-Bielowka, C.M. Roland, J. Chem. Phys. 116, 9839 (2002)Google Scholar
  40. 40.
    T. Atake, C.A. Angell, J. Phys. Chem. 83, 3218 (1979)Google Scholar
  41. 41.
    S. Hensel-Bielowka, J. Ziolo, M. Paluch, C.M. Roland, J. Chem. Phys. 117, 2317 (2002)Google Scholar
  42. 42.
    M. Paluch, K. Ngai, S. Hensel-Bielowka, J. Chem. Phys. 114, 10872 (2001)Google Scholar
  43. 43.
    Based on data from W. Steffen, A. Patkowski, G. Meier, E.W. Fischer, J. Chem. Phys. 96, 4171 (1992)Google Scholar
  44. 44.
    L. Comez, D. Fioretto, F. Scarponi, G. Monaco, J. Chem. Phys. 119, 6032 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • C. Dreyfus
    • 1
    Email author
  • A. Le Grand
    • 1
  • J. Gapinski
    • 2
  • W. Steffen
    • 3
  • A. Patkowski
    • 2
  1. 1.PMC, UMR 7602-CNRSParisFrance
  2. 2.Institute of PhysicsA. Mickiewicz UniversityPoznanPoland
  3. 3.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations