A scheme for secure direct communication using EPR pairs and teleportation

Article

Abstract.

A novel scheme for secure direct communication between Alice and Bob is proposed, where there is no need for establishing a shared secret key. The communication is based on Einstein-Podolsky-Rosen (EPR) pairs and teleportation between Alice and Bob. After insuring the security of the quantum channel (EPR pairs), Bob encodes the secret message directly on a sequence of particle states and transmits them to Alice by teleportation. In this scheme teleportation transmits Bob’s message without revealing any information to a potential eavesdropper. Alice can read out the encoded messages directly by the measurement on her qubits. Because there is not a transmission of the qubit which carries the secret message between Alice and Bob, it is completely secure for direct secret communication if perfect quantum channel is used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.H. Bennett, G. Brassard, Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175-179Google Scholar
  2. 2.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    C.H. Bennett, G. Brassard, N.D. Mermin, Phys. Rev. Lett. 68, 557 (1992)Google Scholar
  4. 4.
    C.H. Bennett, Phys. Rev. Lett. 68, 3121 (1992)CrossRefGoogle Scholar
  5. 5.
    C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)CrossRefMATHGoogle Scholar
  6. 6.
    L. Goldenberg, L. Vaidman, Phys. Rev. Lett. 75, 1239 (1995)CrossRefMATHGoogle Scholar
  7. 7.
    B. Huttner, N. Imoto, N. Gisin, T. Mor, Phys. Rev. A 51, 1863 (1995)CrossRefGoogle Scholar
  8. 8.
    M. Koashi, N. Imoto, Phys. Rev. Lett. 79, 2383 (1997)CrossRefMATHGoogle Scholar
  9. 9.
    D. Bru, Phys. Rev. Lett. 81, 3018 (1998)CrossRefGoogle Scholar
  10. 10.
    W.Y. Hwang, I.G. Koh, Y.D. Han, Phys. Lett. A 244, 489 (1998)CrossRefMATHGoogle Scholar
  11. 11.
    A. Cabello, Phys. Rev. Lett. 85, 5635 (2000)CrossRefGoogle Scholar
  12. 12.
    A. Cabello, Phys. Rev. A 61, 052312 (2000)CrossRefGoogle Scholar
  13. 13.
    G.L. Long, X.S. Liu, Phys. Rev. A 65, 032302 (2002)CrossRefGoogle Scholar
  14. 14.
    B.S. Shi, Y.K. Jiang, G.C. Guo, Appl. Phys. B 70, 415 (2000)CrossRefGoogle Scholar
  15. 15.
    P. Xue, C.F. Li, G.C. Guo, Phys. Rev. A 65, 022317 (2002)CrossRefGoogle Scholar
  16. 16.
    F.G. Deng et al. , Chin. Phys. Lett. 19, 893 (2002)CrossRefGoogle Scholar
  17. 17.
    S.J.D. Phoenix, S.M. Barnett, P.D. Townsend, K.J. Blow, J. Modern Optics 42, 1155 (1995)Google Scholar
  18. 18.
    H.-K. Lo, H.F. Chan, M. Ardehali, arXiv:quant-ph/0011056Google Scholar
  19. 19.
    A. Beige et al. , Acta Phys. Pol. A 101, 357 (2002)Google Scholar
  20. 20.
    K. Boström, T. Felbinger, Phys. Rev. Lett. 89, 187902 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Wójcik, Phys. Rev. Lett. 90, 157901 (2003)CrossRefGoogle Scholar
  22. 22.
    F.G. Deng, G.L. Long, X.S. Liu, Phys. Rev. A 68, 042317 (2003)CrossRefGoogle Scholar
  23. 23.
    C.H. Bennett et al. , Phys. Rev. Lett. 70, 1895 (1993)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    D. Bouwmeester et al. , Nature 390, 575 (1997)CrossRefGoogle Scholar
  25. 25.
    D. Boschi et al. , Phys. Rev. Lett. 80, 1121 (1998)CrossRefGoogle Scholar
  26. 26.
    M.A. Nielsen et al. , Nature 396, 52 (1998)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.CCAST (World Laboratory)BeijingP.R. China
  2. 2.Department of PhysicsHebei Normal UniversityShijiazhuangP.R. China

Personalised recommendations