Cotton-yarn/TiO\(\mathsf{_{2}}\) dispersed resin photonic crystals with straight and wavy structures

  • Y. WatanabeEmail author
  • T. Kobayashi
  • S. Kirihara
  • Y. Miyamoto
  • K. Sakoda


The feasibility of three-dimensional (3-D) photonic crystals made using textile technology was investigated. Three different textures consisting of the cotton-yarn and TiO2 dispersed resin; a crossed linear-yarn laminated fabric, a multi layered woven fabric, and a 3-D woven fabric, were fabricated. The microwave attenuation of the transmission amplitude through these photonic crystals was measured. The straight cotton-yarn as well as the wavy cotton-yarn/TiO2 dispersed resin photonic crystals exhibited band gaps in the 6 to 15 GHz range. Thus, we could fabricate successfully 3-D photonic crystals using textile technology.


TiO2 Microwave Attenuation Photonic Crystal Textile Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993)Google Scholar
  2. 2.
    R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand, Phys. Rev. B 48, 8434 (1993)CrossRefGoogle Scholar
  3. 3.
    H.S. Sozuer, J.W. Haus, J. Opt. Soc. Am. B 10, 296 (1993)Google Scholar
  4. 4.
    E. Yablonovitch, J. Modern Optics 41, 173 (1994)Google Scholar
  5. 5.
    J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)CrossRefGoogle Scholar
  6. 6.
    K.M. Ho, C.T. Chan, C.M. Soukoulis, R. Biswas, M. Sigalas, Solid State Comm. 89, 413 (1994).CrossRefGoogle Scholar
  7. 7.
    S. Noda, N. Yamamoto, A. Sasaki, Jpn J. Appl. Phys. 35, L909 (1996)Google Scholar
  8. 8.
    N. Yamamoto, S. Noda, A. Chutinan, Jpn J. Appl. Phys. 37, L1052 (1998)Google Scholar
  9. 9.
    A. Reynolds, F. Lopez-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, J. Sanchez-Dehesa, Phys. Rev. B 60, 11422 (1999)CrossRefGoogle Scholar
  10. 10.
    S. Kirihara, Y. Miyamoto, K. Kajiyama, J. Am. Ceramic Soc. 85, 1369 (2002)Google Scholar
  11. 11.
    S. Kirihara, Y. Miyamoto, K. Takenaga, M. Wada Takeda, K. Kajiyama, Solid State Comm. 121, 435 (2002)CrossRefGoogle Scholar
  12. 12.
    H.S. Sozuer, J.P. Dowling, J. Modern Optics 41, 231 (1994)Google Scholar
  13. 13.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, New Jersey, 1995), p. 40Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Y. Watanabe
    • 1
    Email author
  • T. Kobayashi
    • 1
  • S. Kirihara
    • 2
  • Y. Miyamoto
    • 2
  • K. Sakoda
    • 3
  1. 1.Department of Functional Machinery and MechanicsShinshu UniversityUedaJapan
  2. 2.Joint and Welding Research InstituteOsaka UniversityIbarakiJapan
  3. 3.Nanomaterials LaboratoryNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations