Advertisement

Relaxation and ordering processes in “macroscopic Wigner crystals”

Article

Abstract.

The equilibrium configurations of a macroscopic Wigner crystal (2D system of interacting charged balls, mechanically excited) and their evolution towards these equilibrium configurations are presented. In particular, the variations of the number of remaining dislocations at equilibrium according to the number of particles, confinement shape and temperature have been extensively explored. One important result is the exhibition of the rapid creation of an unique grain boundary and its shrinkage during the annealing.

Keywords

Shrinkage Charged Ball Equilibrium Configuration Wigner Crystal Rapid Creation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.J. Campbell, R.M. Ziff, Phys. Rev. B 20, 1886 (1979)CrossRefGoogle Scholar
  2. 2.
    E.J. Yarmachuk, R.E. Packard, J. Low Temp. Phys. 46, 479 (1982)Google Scholar
  3. 3.
    P. Leiderer, W. Ebner, V.B. Shikin, Surf. Sci. 113, 405 (1987)CrossRefGoogle Scholar
  4. 4.
    V.A. Schweigert, F.M. Peeters, P. Singha Deo, Phys. Rev. Lett. 81, 2783 (1998) and references thereinCrossRefGoogle Scholar
  5. 5.
    N.B. Zhitenev, R.C. Ashoori, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 79, 2308 (1997)CrossRefGoogle Scholar
  6. 6.
    F. Chevy, K.W. Madison, J. Dalibard, Phys. Rev. Lett. 85, 2223 (2000); P. Engels, I. Coddington, P.C. Haljan, E.A. Cornell, Phys. Rev. Lett. 89, 100403 (2002)CrossRefGoogle Scholar
  7. 7.
    S.L. Gilbert, J.J. Billinger, D.J. Wineland, Phys. Rev. Lett. 60, 2022 (1988)CrossRefGoogle Scholar
  8. 8.
    Wen Tau Juan, Zen-hong Huang, Ju-Wang hsui, Ying-Ju Lai, Lin I, Phys. Rev. E 58, 6947 (1998)CrossRefGoogle Scholar
  9. 9.
    J.J. Thomson, Phil. Mag. 7, 237 (1904)MATHGoogle Scholar
  10. 10.
    F. Bolton, U. Rössler, Superlatt. Microstruct. 13, 139 (1993)CrossRefGoogle Scholar
  11. 11.
    V. Bedanov, F.M. Peeters, Phys. Rev. B 49, 2667 (1994)CrossRefGoogle Scholar
  12. 12.
    V.A. Schweigert, F.M. Peeters, Phys. Rev. B 51, 7700 (1995)CrossRefGoogle Scholar
  13. 13.
    Ying-Ju Lai, Lin I, Phys. Rev. E 60, 4743 (1999)CrossRefGoogle Scholar
  14. 14.
    L. Candido, J.P Rino, N. Studart, F.M. Peeters, J. Phys.: Condens. Matter 10, 11627 (1998)CrossRefGoogle Scholar
  15. 15.
    L.J. Campbell, R.M. Ziff, Phys. Rev. B 20, 1886 (1979)CrossRefGoogle Scholar
  16. 16.
    In previous studies we have shown that the equilibrium configurations of mesoscopic systems are in agreement with those calculated for Logarithmic interaction. Moreover we have been able to invalidate a published numerical ground configuration for N=17 particles, to show that this proposed configuration was in fact the first excited state and to suggest the actual ground state. Our experimental prediction was later confirmed numerically by the authors (the relative energy difference between the two configurations being 10−5). These indirect arguments (analytical direct derivation is a challenge) are very strong and have convinced us about the validity of the surprizing logarithmic interactionGoogle Scholar
  17. 17.
    M. Saint Jean, C. Even, C. Guthmann, Europhys. Lett. 55, 45 (2001); M. Saint Jean, C. Guthmann, J. Phys.: Condens. Matter 14, 13653 (2002)CrossRefGoogle Scholar
  18. 18.
    J. Friedel, Dislocations (Pergamon Press Oxford, 1964)Google Scholar
  19. 19.
    D.S. Fisher, B.I. Halperin, R. Morf, Phys. Rev. B 20, 4692 (1979)CrossRefGoogle Scholar
  20. 20.
    A.A. Koulakov, B.I. Shklovskii, Phys. Rev. B 57, 2352 (1998)CrossRefGoogle Scholar
  21. 21.
    Ying Ju Lai, Lin I, Phys. Rev. E 60, 4743 (1999)CrossRefGoogle Scholar
  22. 22.
    L. Bonsall, A.A. Maradudin, Phys. Rev. B 15, 1959 (1977)CrossRefGoogle Scholar
  23. 23.
    M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)Google Scholar
  24. 24.
    Mermin, Phys. Rev. 176, 250 (1968)CrossRefGoogle Scholar
  25. 25.
    B. Pouligny, R. Malzbender, P. Ryan, N. Clark, Phys. Rev. B 42, 988 (1990). This kind of argument has also be used to analyze the first-order melting transition rather than the KT process obtained in numerical studies by K. Bagchi et al. (Phys. Rev. Lett. 76, 255 (1996))CrossRefGoogle Scholar
  26. 26.
    M.A. Moore, A. Perez-Garrido, Phys. Rev. Lett. 82, 4078 (1999)CrossRefGoogle Scholar
  27. 27.
    R. Seshadri, R.M. Westervelt, Phys. Rev. B 46, 5142 (1992); R. Seshadri, R.M. Westervelt, Phys. Rev. B 46, 5150 (1992); K.J. Naidoo, J. Schnitker, J. Chem. Phys. 100, 3114 (1994)CrossRefGoogle Scholar
  28. 28.
    A. Pertisinidis, X. Liang, Phys. Rev. Lett. 87, 98303 (2001)CrossRefGoogle Scholar
  29. 29.
    W.T. Read, W. Schockley, Phys. Rev. 78, 275 (1950)CrossRefMATHGoogle Scholar
  30. 30.
    R. Kobayashi, J.A. Warren, W.C. Carter, Physica D 140, 141 (2000)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Groupe de Physique des SolidesUniversités Paris-6/ Paris-7, Unité mixte du CNRS (UMR 75 88)Paris CedexFrance

Personalised recommendations