Arrays of Ni nanowires in alumina membranes: magnetic properties and spatial ordering

  • M. VázquezEmail author
  • M. Hernández-Vélez
  • K. Pirota
  • A. Asenjo
  • D. Navas
  • J. Velázquez
  • P. Vargas
  • C. Ramos


Magnetic characteristics of arrays of Ni nanowires embedded in porous alumina are reviewed as a function of their spatial ordering. The different steps for the controlled production of highly-ordered nanowires is firstly described. Nanopores are formed into an hexagonal symmetry arrangement by self-organized process during anodization of pure Al. Parameters of the anodization allow us to control their diameter, hexagonal lattice parameter and size of crystalline domains. Subsequently, Ni nanowires are grown inside the pores by electrodeposition. Control of the pores filling and of geometrical ordering characteristics has been performed by SEM, HRSEM, RBS and AFM techniques. The magnetic characterisation of the arrays has been achieved by SQUID and VSM magnetometers, while information on the magnetic state of individual nanowires is obtained by MFM. Experimental studies are presented, particularly coercivity and remanence, for arrays with different degree of ordering (crystalline domains up to around 1 μm), and for ratio diameter to lattice parameter (diameter ranging between 20 and 180 nm, and distance between 35 and 500 nm). FMR studies have allows us to obtain complementary information of the anisotropy and magnetic characteristics. A modelling of multipolar interacting nanowires is introduced to account for the influence of short and long range ordering degree of the arrays.


Long Range Magnetic State Remanence Ratio Diameter Magnetic Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Appell, Nature 419, 553 (2002)CrossRefGoogle Scholar
  2. 2.
    J.I. Martín, J. Nogués, K. Liu, J.L. Vicent, I.K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003)CrossRefGoogle Scholar
  3. 3.
    C. Ross, Ann. Rev. Mater. Res. 31, 203 (2001)CrossRefGoogle Scholar
  4. 4.
    See J. Magn. Magn. Mater. 249 (2002) Vols. 1-2 devoted to the Proceedings of the Int. Workshop on Magnetic Wires, San Sebastián, SpainGoogle Scholar
  5. 5.
    R. O’Barr, S.Y. Yamamoto, S. Schultz, W. Xu, A. Scherer, J. Appl. Phys. 81, 4730 (1997)CrossRefGoogle Scholar
  6. 6.
    R. Skomski, H. Zeng, M. Zheng, D.J. Sellmyer, Phys. Rev. B 62, 3900 (2000)CrossRefGoogle Scholar
  7. 7.
    C. Ross et al. , J. Vac. Sci. Techn. B 17, 3168 (1999)CrossRefGoogle Scholar
  8. 8.
    R. O’Barr, R.M. Lederman, S. Schultz, W. Xu, A. Scherer, R. J. Tonicci, J. Appl. Phys. 79, 5303 (1996)CrossRefGoogle Scholar
  9. 9.
    T.M. Witney, J.S. Jiang, P. Searson, C. Chien, Science 261, 1316 (1993)Google Scholar
  10. 10.
    L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Appl. Phys. Lett. 65, 2484 (1994)CrossRefGoogle Scholar
  11. 11.
    C.L. Chien et al. , in reference [12], p. 146Google Scholar
  12. 12.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)Google Scholar
  13. 13.
    K. Nielsch, R. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S. Fischer, H. Kronmüller, Appl. Phys. Lett. 79, 1360 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Fert, L. Piraux, J. Magn. Magn. Mater. 200, 338(1999)CrossRefGoogle Scholar
  15. 15.
    D.J. Sellmyer, M. Zheng, R. Skomski, J. Phys.: Condens. Matter 13, R433 (2001)Google Scholar
  16. 16.
    P.M. Paulus, F. Luis, M. Kröll, G. Schmid, L.J. de Jongh, J. Magn. Magn. Mater. 224, 180 (2001)CrossRefGoogle Scholar
  17. 17.
    K. Nielsch et al. , J. Magn. Magn. Mater. 249, 234 (2002)CrossRefGoogle Scholar
  18. 18.
    W. Schwarzacher, K. Attenborough, A. Michel, G. Nabiyouni, J.P. Meier, J. Magn. Magn. Mater. 165, 23 (1997)CrossRefGoogle Scholar
  19. 19.
    J. Lee et al. , J. Appl. Phys. 91, 8513 (2002)CrossRefGoogle Scholar
  20. 20.
    A. Blondel, J.P. Meier, B. Doudin, J.Ph. Ansermet, Appl. Phys. Lett. 65, 3019 (1994)CrossRefGoogle Scholar
  21. 21.
    A. Radulescu, U. Ebels, Y. Henry, K. Ounadjela, J.L. Duvail, L. Piraux, IEEE Trans Magn. 36, 3062 (2000)CrossRefGoogle Scholar
  22. 22.
    T. Ohgai, X. Hoffer, L. Gravier, J.E. Wegrowe, J.P. Ansermet, Nanotechnology 14, 978 (2003)CrossRefGoogle Scholar
  23. 23.
    S. Dubois, J. Colin, J.L. Duvail, L. Piraux, Phys. Rev. B 61, 14315 (2000)CrossRefGoogle Scholar
  24. 24.
    J.M. García, A. Asenjo, M. Vázquez, P. Aranda, E. Ruiz-Hiztky, IEEE Trans. Magn. 36, 2981 (2000)CrossRefGoogle Scholar
  25. 25.
    G. Hadjipanayis et al. , J. Appl. Phys. 91, 6869 (2002)CrossRefGoogle Scholar
  26. 26.
    T.G. Sorop, C. Untiedt, F. Luis, M. Kröll, M. Rasa, J. de Jongh, Phys. Rev. B 67, 14402 (2003)CrossRefGoogle Scholar
  27. 27.
    K. Nielsch, R. Hertel, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S.F. Fischer, H. Kronmüller, IEEE Trans. Magn. 38, 2571 (2002)CrossRefGoogle Scholar
  28. 28.
    R. Hertel, in reference [13] p. 251; H. Forster et al. , in reference [13] p. 181Google Scholar
  29. 29.
    M. Vázquez, D.-X. Chen, IEEE Trans. Magn. 31, 1229 (1995)CrossRefGoogle Scholar
  30. 30.
    M. Kröll et al. , in reference [13] p. 241; J. Stankiewicz, F. Luis, A. Camón, M. Kröll, J. Bartolomé, W. Blau, J. Magn. Magn. Mater. (in press)Google Scholar
  31. 31.
    R. Skomski, H. Zeng, D.J. Sellmyer, in reference [13] p. 175Google Scholar
  32. 32.
    U. Ebels, A. Radulescu, Y. Henry, L. Piraux, K. Ounadjela, Phys. Rev. Lett. 84, 983 (2000)CrossRefGoogle Scholar
  33. 33.
    Y. Henry, A. Iovan, J.M. George, L. Piraux, Phys. Rev. B 66, 184430 (2002)CrossRefGoogle Scholar
  34. 34.
    A. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen, U. Ebels, Phys. Rev. B 63, 104415 (2001); M. Demand et al. , in reference [13] p. 228CrossRefGoogle Scholar
  35. 35.
    U. Ebels, J.L. Duvail, P.E. Wigen, L. Piraux, L.D. Buda, K. Ounadjela, Phys. Rev. B 64, 14421 (2001)CrossRefGoogle Scholar
  36. 36.
    K. Nielsch, F. Müller, A.P. Li, U. Gösele, Adv. Mater. 12, 342 (2000)CrossRefGoogle Scholar
  37. 37.
    R.M. Metzger, V.V. Konovalov, M. Sum, T. Xu, G. Zangari, B. Xu, M. Benakli, W.D. Doyle, IEEE Trans. Magn. 36, 1 (2000)CrossRefGoogle Scholar
  38. 38.
    M. Hernández-Vélez, K. Pirota, F. Paszti, D. Navas, A. Climent, I. Schmytko, M. Vázquez (submitted)Google Scholar
  39. 39.
    K. Pirota, D. Navas, M. Hernández-Vélez, K. Nielsch, M. Vázquez, J. Alloys Comp. 369, 18 (2004)CrossRefGoogle Scholar
  40. 40.
    M. Vázquez, K. Nielsch, P. Vargas, J. Velázquez, D. Navas, K. Pirota, M. Hernández-Vélez, E. Vogel, J. Cartes, R.B. Wehrspohn, U. Gösele, Physica B 343, 395 (2004)Google Scholar
  41. 41.
    R. Arias, D.L. Mills, Phys. Rev. B 67, 94423 (2003)CrossRefGoogle Scholar
  42. 42.
    Z.W. Wang et al. , Phys. Rev. Lett. 89, 27201 (2002)CrossRefGoogle Scholar
  43. 43.
    C. Ramos, M. Vázquez, K. Nielsch, K. Pirota, J. Rivas, R.B. Wehrspohn, M. Tovar, R.D. Sánchez, U. Gösele, Proc. ICM’2003 (J. Magn. Magn. Mater. in press)Google Scholar
  44. 44.
    E.O. Samwel, P.R. Bissell, J.C. Lodder, J. Magn. Magn. Mater. 115, 327 (1992)CrossRefGoogle Scholar
  45. 45.
    J. Velázquez, M. Vázquez, IEEE Trans. Magn. 38, 2477 (2002)CrossRefGoogle Scholar
  46. 46.
    J. Velázquez, C. García, M. Vázquez, A. Hernando, Phys. Rev. B 54, 9903 (1995)CrossRefGoogle Scholar
  47. 47.
    J. Velázquez K. Pirota, M. Vázquez, IEEE Trans. Magn. 39, 249 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • M. Vázquez
    • 1
    Email author
  • M. Hernández-Vélez
    • 1
  • K. Pirota
    • 1
  • A. Asenjo
    • 1
  • D. Navas
    • 1
  • J. Velázquez
    • 2
  • P. Vargas
    • 3
  • C. Ramos
    • 4
  1. 1.Instituto de Ciencia de MaterialesCSICMadridSpain
  2. 2.Fac. Químicas-UCMCAI XRDMadridSpain
  3. 3.Dept. FísicaUniv. Técnica F. Sta. M$^{\rm a}$ValparaisoChile
  4. 4.Instituto BalseiroCentro AtómicoBarilocheArgentina

Personalised recommendations