Magnetization plateau and quantum phase transitions in a spin-orbital model

  • Zu-Jian Ying
  • Angela Foerster
  • Xi-Wen Guan
  • Bin Chen
  • Itzhak Roditi

Abstract.

A spin-orbital chain with different Landé g factors and one-ion anisotropy is studied in the context of the thermodynamical Bethe ansatz. It is found that there exists a magnetization plateau resulting from the different Landé g factors. Detailed phase diagram in the presence of an external magnetic field is presented both numerically and analytically. For some values of the anisotropy, the four-component system undergoes five consecutive quantum phase transitions when the magnetic field varies. We also study the magnetization in various cases, especially its behaviors in the vicinity of the critical points. For the SU(4) spin-orbital model, explicit analytical expressions for the critical fields are derived, with excellent accuracy compared with numerics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Tokura, N. Nagaosa, Science 288, 462 (2000)CrossRefGoogle Scholar
  2. 2.
    E. Saitoh, S. Okamoto, K.T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa, Y. Tokura, Nature 410, 180 (2001)CrossRefGoogle Scholar
  3. 3.
    Y.Q. Li, M. Ma, D.N. Shi, F.C. Zhang, Phys. Rev. Lett. 81, 3527 (1998)CrossRefGoogle Scholar
  4. 4.
    S.K. Pati, R.R.P. Singh, D.I. Khomskii, Phys. Rev. Lett. 81, 5406 (1998)CrossRefGoogle Scholar
  5. 5.
    Y.Q. Li, M. Ma, D.N. Shi, F.C. Zhang, Phys. Rev. B 60, 12781 (1999)CrossRefGoogle Scholar
  6. 6.
    F. Mila, B. Frischmuth, A. Deppeler, M. Troyer, Phys. Rev. Lett. 82, 3697 (1999)CrossRefGoogle Scholar
  7. 7.
    B. Frischmuth, F. Mila, M. Troyer, Phys. Rev. Lett. 82, 835 (1999)CrossRefGoogle Scholar
  8. 8.
    P. Azaria, A.O. Gogolin, P. Lecheminant, A.A. Nersesyan, Phys. Rev. Lett. 83, 624 (1999)CrossRefGoogle Scholar
  9. 9.
    Y. Yamashita, N. Shibata, K. Ueda, Phys. Rev. B 61, 4012 (2000)CrossRefGoogle Scholar
  10. 10.
    S.J. Gu, Y.Q. Li, Phys. Rev. B 66, 092404 (2002)CrossRefGoogle Scholar
  11. 11.
    B. Sutherland, Phys. Rev. B 12, 3795 (1975)CrossRefGoogle Scholar
  12. 12.
    F.D.M. Haldane, Phys. Lett. A 93, 464 (1983)CrossRefMathSciNetGoogle Scholar
  13. 13.
    M. Oshikawa, M. Yamanaka, I. Affleck, Phys. Rev. Lett. 78, 1984 (1997)CrossRefGoogle Scholar
  14. 14.
    K. Kodama et al. , Science 298, 395 (2002); K. Onizuka et al. , J. Phys. Soc. Jpn 69, 1016 (2000); G. Misguich, Th. Jolicoeur, S.M. Girvin, Phys. Rev. Lett. 87, 097203 (2001); B.S. Shastry, B. Sutherland, Physica B 108, 1069 (1981)CrossRefGoogle Scholar
  15. 15.
    D.P. Arovas, A. Auerbach, Phys. Rev. B 52, 10114 (1995)CrossRefGoogle Scholar
  16. 16.
    J.C. Slonczewski, Phys. Rev. 110, 1341 (1958)CrossRefGoogle Scholar
  17. 17.
    A.V. Onufriev, J.B. Marston, Phys. Rev. B 59, 12573 (1998)CrossRefGoogle Scholar
  18. 18.
    C.P. Slichter, Principles of magnetic resonance, 3rd edn. (Springer-Verlag, New York, 1990)Google Scholar
  19. 19.
    M. Takahashi, Prog. Theor. Phys. 46, 401 (1971)Google Scholar
  20. 20.
    C.N. Yang, C.P. Yang, J. Math. Phys. 10, 1115 (1969)CrossRefMATHGoogle Scholar
  21. 21.
    M.G. Krein, Usp. Mat. Nauk 13, 3 (1958)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Zu-Jian Ying
    • 1
    • 2
    • 3
  • Angela Foerster
    • 2
  • Xi-Wen Guan
    • 4
  • Bin Chen
    • 1
  • Itzhak Roditi
    • 3
  1. 1.Department of PhysicsHangzhou Teachers CollegeHangzhouP.R. China
  2. 2.Instituto de Física da UFRGSPorto AlegreBrazil
  3. 3.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  4. 4.Department of Theoretical Physics, Research School of Physical Sciences and Engineering, and Centre for Mathematics and its Applications, Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia

Personalised recommendations