The European Physical Journal B

, Volume 38, Issue 2, pp 387–391 | Cite as

Statistical features of drainage basins in mars channel networks

Can one guess from the landscape the past presence of water?
  • G. Caldarelli
  • P. De Los Rios
  • M. Montuori
  • V. D. P. ServedioEmail author


Erosion by flowing water is one of the major forces shaping the surface of Earth. Studies in the last decade have shown, in particular, that the drainage region of rivers, where water is collected, exhibits scale invariant features characterized by exponents that are the same for rivers around the world. Here we show that from the data obtained by the MOLA altimeter of the Mars Global Surveyor one can perform the same analysis for mountain sides on Mars. We then show that in some regions fluid erosion might have played a role in the present martian landscape.


Flowing Water Mountain Side Statistical Feature Drainage Basin Invariant Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.C. Malin, K.S. Edgett, Science 288, 2330 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    M.C. Malinand K.S. Edgett, Science 290, 1927 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Head et al. , Science 286, 2134 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    P.D. Lanagan, A.S. McEwen, L.P. Keszthelyi, T. Thordarson, Geophys. Res. Lett. 28, 2365 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    G.Caldarelli, P. De Los Rios, M. Montuori, Statistical Features of Drainage Basins in Mars Channel Networks, (2001)Google Scholar
  6. 6.
    T.F. Stepinski, M.M. Marinova, P.J. McGovern, S.M. Clifford, Geophys. Res. Lett. 29, 30 (2002)CrossRefGoogle Scholar
  7. 7.
    I. Rodriguez-Iturbe, A. Rinaldo Fractal Rivers Basins, Chance and Self-Organization (Cambridge University Press, Cambridge, 1997)Google Scholar
  8. 8.
    D.G. Tarboton, R.L. Bras, I. Rodriguez-Iturbe, Water Resour. Res. 24, 1317 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    J.T. Hack, U.S. Geol. Survey Prof. Paper 294-B, 1 (1957)Google Scholar
  10. 10.
    L. Band Water Resour. Res. 22, 15 (1986)Google Scholar
  11. 11.
    W.E. Dietrich, C.J. Wilson, D.R. Montgomery, J. McKean, J. Geol. 20, 675 (1992)CrossRefGoogle Scholar
  12. 12.
    A. Maritan et al. , Phys. Rev. E 53, 1510 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    G. Caldarelli, Phys. Rev. E 63, 21118 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    A. Coniglio, Phys. Rev. Lett. 62, 3054 (1989)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    I. Rodriguez-Iturbe et al. , Water Resour. Res. 28, 1095 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    A.E. Scheidegger, Water Resources Research 6, 750 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Peizhen, P. Molnar, W.R. Downs, Nature 410, 891 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • G. Caldarelli
    • 1
    • 4
  • P. De Los Rios
    • 2
  • M. Montuori
    • 3
    • 4
  • V. D. P. Servedio
    • 1
    Email author
  1. 1.INFM UdR di Roma1 and Dip. di FisicaUniversitá “La Sapienza”RomaItaly
  2. 2.Institut de Physique ThéoriqueUniversité de LausanneLausanneSwitzerland
  3. 3.SMC INFMUniversitá “La Sapienza”RomaItaly
  4. 4.Centro Studi e Ricerche E. FermiRomaItaly

Personalised recommendations