Advertisement

The European Physical Journal B

, Volume 38, Issue 2, pp 373–380 | Cite as

Community analysis in social networks

  • A. Arenas
  • L. Danon
  • A. Díaz-GuileraEmail author
  • P. M. Gleiser
  • R. Guimerá
Article

Abstract.

We present an empirical study of different social networks obtained from digital repositories. Our analysis reveals the community structure and provides a useful visualising technique. We investigate the scaling properties of the community size distribution, and find that all the networks exhibit power law scaling in the community size distributions with exponent either -0.5 or -1. Finally we find that the networks’ community structure is topologically self-similar using the Horton-Strahler index.

Keywords

Social Network Community Structure Empirical Study Community Analysis Community Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. de Menezes, A.L. Barabasi, Phys. Rev. Lett. 92, 028701 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    L.P.D. Garlaschelli, G. Caldarelli, Nature 423, 165 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M.E.J. Newman, SIAM Review 45, 167 (2003)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A.K. Jain, R.C. Dubes, Algorithms for clustering data (Prentice Hall, Englewood Cliffs, NJ, USA, 1988)Google Scholar
  5. 5.
    M. Girvan, M.E.J. Newman, Proc. Nat. Ac. Sci. USA 99, 7821 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Wasserman, K. Faust, Social Network Analysis (Cambridge University Press, Cambridge, UK, 1994)Google Scholar
  7. 7.
    M.E.J. Newman, Phys. Rev. E 64, 016132 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    R. Guimera et al. , Phys. Rev. E 68, 065103(R) (2003)ADSCrossRefGoogle Scholar
  9. 9.
    P. Gleiser, L. Danon, Adv. Complex Syst. 6, 565 (2003)CrossRefGoogle Scholar
  10. 10.
    L.J. Hanifan, The New Grove Dictionary of Jazz (St. Martin’s Press, New York, Boston, MA, USA, 1994)Google Scholar
  11. 11.
    M.E.J. Newman, Phys. Rev. E 64, 016131 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    A. Rinaldo et al. , Phys. Rev. Lett. 70, 822 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    I. Rodriguez-Iturbe, A. Rinaldo, Fractal river basins: chance and self-organization (Cambridge University Press, Cambridge, 1996)Google Scholar
  14. 14.
    A. Maritan et al. , Phys. Rev. E 53, 1510 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    J. Banavar, A. Maritan, A. Rinaldo, Nature 399, 130 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    S. Kramer, M. Marder, Phys. Rev. Lett. 68, 205 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    K. Sinclair, R.C. Ball, Phys. Rev. Lett. 76, 3360 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    R.E. Horton, Bull. Geol. Soc. Am. 56, 275 (1945)CrossRefGoogle Scholar
  19. 19.
    A.N. Strahler, Bull. Geol. Soc. Am. 63, 923 (1952)CrossRefGoogle Scholar
  20. 20.
    T.C. Halsey, Europhys. Lett. 39, 43 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • A. Arenas
    • 1
  • L. Danon
    • 2
  • A. Díaz-Guilera
    • 2
    Email author
  • P. M. Gleiser
    • 2
  • R. Guimerá
    • 3
  1. 1.Departament d’Enginyeria Informática i MatemátiquesUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Department de Física FonamentalUniversitat de BarcelonaBarcelonaSpain
  3. 3.Department of Chemical EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations