Advertisement

The European Physical Journal B

, Volume 38, Issue 2, pp 311–319 | Cite as

Self-contained algorithms to detect communities in networks

  • C. Castellano
  • F. Cecconi
  • V. LoretoEmail author
  • D. Parisi
  • F. Radicchi
Article

Abstract.

The investigation of community structures in networks is an important issue in many domains and disciplines. In this paper we present a new class of local and fast algorithms which incorporate a quantitative definition of community. In this way the algorithms for the identification of the community structure become fully self-contained and one does not need additional non-topological information in order to evaluate the accuracy of the results. The new algorithms are tested on artificial and real-world graphs. In particular we show how the new algorithms apply to a network of scientific collaborations both in the unweighted and in the weighted version. Moreover we discuss the applicability of these algorithms to other non-social networks and we present preliminary results about the detection of community structures in networks of interacting proteins.

Keywords

Community Structure Interact Protein Fast Algorithm Scientific Collaboration Weighted Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    M.E.J. Newman, SIAM Review 45, 167 (2003)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Computer Networks 33, 309 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    C. Moore, M.E.J. Newman, Phys. Rev. E 61, 5678 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    A. Wagner, D. Fell, Proc. R. Soc. London B 268, 1803 (2001)CrossRefGoogle Scholar
  9. 9.
    E. Ravasz, A. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Science 297, 1551 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J.A. Dunne, R.J. Williams, N.D. Martinez, Proc. Natl. Acad. Sci. USA 99, 12917 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    J. Camacho, R. Guimerá, L.A.N. Amaral, Phys. Rev. Lett. 88, 228102 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    D. Garlaschelli, G. Caldarelli, L. Pietronero, Nature 423, 165 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    S. Redner, Eur. Phys. J. B 4, 131 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    P. De Los Rios, Europhys. Lett. 56, 898 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    A. Rives, T. Galitski, Proc. Natl. Acad. Sci. USA 100, 1128 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    G.W. Flake, S.R. Lawrence, C.L. Giles, F.M. Coetzee, IEEE Computer 35, 66 (2002)CrossRefGoogle Scholar
  18. 18.
    D. Wilkinson, B.A. Huberman, arXiv:cond-mat/0210147 (2002)Google Scholar
  19. 19.
    M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026116 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Proc. Natl. Acad. Sci. USA 101, 2658 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M.E.J. Newman, arXiv:cond-mat/0309508 (2003)Google Scholar
  22. 22.
    F. Wu, B.A. Huberman, arXiv:cond-mat/0310600 (2003)Google Scholar
  23. 23.
    S. Wasserman, K. Faust, Social Network Analysis (Cambridge Univ. Press, Cambridge, U.K., 1994)Google Scholar
  24. 24.
    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M.E.J. Newman, Phys. Rev. 64, 016131 (2001); U. Brandes, J. Mathematical Sociology 25, 163 (2001)ADSGoogle Scholar
  26. 26.
    H. Zhou, Phys. Rev. E 67, 061901 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    B. Bollobas, Random Graphs (Academic Press, New York, 1985)Google Scholar
  28. 28.
    W.W. Zachary, J. Anthrop. Res. 33, 452 (1977)CrossRefGoogle Scholar
  29. 29.
    The comparison between the community structure in the network and the splitting of the club in two groups should be taken with care. While it is reasonable that the break-up pattern is correlated with the preexisting community structure, there is no reason to expect a perfect overlap. Therefore the misclassification of nodes is not an indication of the failure of the detection algorithmGoogle Scholar
  30. 30.
    M.E.J. Newman, J. Park, Phys. Rev. E 68, 036122 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    R. Pastor-Satorras, A. Vásquez, A. Vespignani Phys. Rev. Lett. 87, 258701 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Q. Chen, H. Chang, R. Govindn, S. Jamin, S.J. Shenker, W. Willinger, Proceedings of the 21st Annaul Joint Conference of the IEEE Computer and Communications Societies, IEEE Computer Society (2002)Google Scholar
  33. 33.
    M.E.J. Newman, Phys. Rev. E. 67, 036126 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    G. Caldarelli, R. Pastor-Satorras, A. Vespignani, arXiv:cond-mat/0212026 (2002)Google Scholar
  35. 35.
    G. Bianconi, A. Capocci, Phys. Rev. Lett. 90, 078701 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    I. Xenarios, D.W. Rice, L. Salwinski, M.K. Baron, E.M. Marcotte, D. Eisenberg, Nuclelic Acids Res. 28, 289. The database is available at the web site http://dip.doe-mbi.ucla.edu/ (2000)CrossRefGoogle Scholar
  37. 37.
    S.-H. Yook, Z.N. Oltvai, A.-L. Barabási, Proteomics 4, 928 (2004)CrossRefGoogle Scholar
  38. 38.
    H.W. Mewes, D. Frishman, U. Guldener, G. Mannhaupt, K. Mayer, M. Mokrejs, B. Morgenstern, M. Munsterkotter, S. Rudd, B. Weil, Nucleic Acids Res 30, 31 (2002). The database is available at the web site http://mips.gsf.de/CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • C. Castellano
    • 1
  • F. Cecconi
    • 2
  • V. Loreto
    • 1
    Email author
  • D. Parisi
    • 2
  • F. Radicchi
    • 3
  1. 1.Dipartimento di FisicaUniversitá di Roma “La Sapienza” and INFM-SMC, Unitá di Roma 1RomaItaly
  2. 2.Istituto di Scienze e Tecnologie della CognizioneC.N.R.RomaItaly
  3. 3.Dipartimento di FisicaUniversitá di Roma “Tor Vergata”RomaItaly

Personalised recommendations