Advertisement

The European Physical Journal B

, Volume 38, Issue 2, pp 277–285 | Cite as

Universality in food webs

  • D. GarlaschelliEmail author
Article

Abstract.

Among recently studied real-world networks, food webs are particularly interesting since they provide an example of biological organization at the largest scale, namely that of ecological communities. Quite surprisingly, recent results reveal that food webs do not display those properties which are observed in almost all other networks, such as a scale-free degree distribution and a large clustering coefficient. However, when food webs are regarded from the point of view of trasportation networks, it is possible to uncover very interesting scaling properties which are displayed by other trasportation systems, namely vascular and river networks. While other topological properties appear to vary across different webs depending on specific aspects, such scaling relations are universal. An interpretation of these results in terms of the interplay of universal and nonuniversal mechanisms in food web evolution is suggested.

Keywords

Recent Result Large Cluster Specific Aspect Degree Distribution Topological Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    S.H. Strogatz, Nature 410, 268 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    J.H. Lawton, in Ecological Concepts, edited by J.M. Cherret (Blackwell Scientific, Oxford, 1989), pp. 43-78Google Scholar
  4. 4.
    S.L. Pimm, Food Webs (Chapman & Hall, London, 1982)Google Scholar
  5. 5.
    J.E. Cohen, F. Briand, C.M. Newman, Community Food Webs: Data and Theory (Springer, Berlin, 1990)Google Scholar
  6. 6.
    J.M. Montoya, R.J. Solé, Theor. Biol. 214, 405 (2002)CrossRefGoogle Scholar
  7. 7.
    R.J. Williams, E.L. Berlow, J.A. Dunne, A.-L. Barabási, Proc. Natl. Acad. Sci. USA 99, 12913 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    J.A. Dunne, R.J. Williams, N.D. Martinez, Proc. Natl. Acad. Sci. USA 99, 12917 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    J. Camacho, R. Guimerá, L.A.N. Amaral, Phys. Rev. Lett. 88, 228102 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    D. Garlaschelli, G. Caldarelli, L. Pietronero, Nature 423, 165 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    I. Rodriguez-Iturbe, A. Rinaldo, Fractal River Basins: Chance and Self-Organization (Cambridge Univ. Press, Cambridge, 1996)Google Scholar
  12. 12.
    J. Banavar, A. Maritan, A. Rinaldo, Nature 399, 130 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    G.B. West, J.H. Brown, B.J. Enquist, Science 276, 122 (1997)CrossRefGoogle Scholar
  14. 14.
    G.B. West, J.H. Brown, B.J. Enquist, Science 284, 1677 (1999)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    C.S. Elton, Animal Ecology (Sidgwick & Jackson, London, 1927)Google Scholar
  16. 16.
    N.D. Martinez, Ecol. Monogr. 61, 367 (1991)CrossRefGoogle Scholar
  17. 17.
    R.J. Williams, N.D. Martinez, Nature 404, 180 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    G. Sugihara, K. Schoenly, A. Trombla, Science 245, 48 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    S.L. Pimm, J.H. Lawton, J.E. Cohen, Nature 350, 669 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    L.-F. Bersier, P. Dixon, G. Sugihara, Am. Nat. 153, 676 (1999)CrossRefGoogle Scholar
  21. 21.
    P.H. Warren, Oikos 55, 299 (1989)CrossRefGoogle Scholar
  22. 22.
    G.A. Polis, Am. Nat. 138, 123 (1991)CrossRefGoogle Scholar
  23. 23.
    L. Goldwasser, J. Roughgarden, Ecology 74, 1216 (1993)CrossRefGoogle Scholar
  24. 24.
    R.R. Christian, J.J. Luczkowich, Ecol. Mod. 117, 99 (1999)CrossRefGoogle Scholar
  25. 25.
    N.D. Martinez, B.A. Hawkins, H.A. Dawah, B.P. Feifarek, Ecology 80, 1044 (1999)CrossRefGoogle Scholar
  26. 26.
    J. Memmott, N.D. Martinez, J.E.J. Cohen, Anim. Ecol. 69, 1 (2000)CrossRefGoogle Scholar
  27. 27.
    S.J. Hall, D.J. Raffaelli, Anim. Ecol. 60, 823 (1991)CrossRefGoogle Scholar
  28. 28.
    M. Huxham, S. Beaney, D. Raffaelli, Oikos 76, 284 (1996)CrossRefGoogle Scholar
  29. 29.
    N.D. Martinez, Am. Nat. 139, 1208 (1992)CrossRefGoogle Scholar
  30. 30.
    J.A. Dunne, R.J. Williams, N.D. Martinez, Ecol. Lett. 5, 558 (2002)CrossRefGoogle Scholar
  31. 31.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1983)Google Scholar
  33. 33.
    G. Caldarelli, P.G. Higgs, A.J.J. McKane, Theor. Biol. 193, 345 (1998)CrossRefGoogle Scholar
  34. 34.
    B. Drossel, P.G. Higgs, A.J.J. McKane, Theor. Biol. 208, 91 (2001)CrossRefGoogle Scholar
  35. 35.
    A.J. McKane, Eur. Phys. J. B 38, 287 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    S.H. Cousins, Trends Ecol. Evol. 6, 190 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.INFM and Dipartimento di FisicaUniversitá di SienaSienaItaly
  2. 2.Center for the Study of Complex Systems (CSC)SienaItaly

Personalised recommendations