Advertisement

The European Physical Journal B

, Volume 38, Issue 2, pp 231–237 | Cite as

An internet graph model based on trade-off optimization

  • J. I. Alvarez-Hamelin
  • N. SchabanelEmail author
Article

Abstract.

This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in [5] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.

Keywords

Graph Model Degree Distribution Standard Parameter General Graph Random Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Albert, A.-L. Barabasi, Phys. Rev. Lett. 85, 5234 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    N. Berger, B. Bollobás, C. Borgs, J. Chayes, O. Riordan, Proc. ICALP 2719, 725 (2003)Google Scholar
  3. 3.
    J.M. Carlson, J. Doyle, Phys. Rev. E 60, 1412 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, W. Willinger, The origin of power laws in internet topologies revisited, in IEEE INFOCOM, pp. 608-617, New York, June 2002Google Scholar
  5. 5.
    A. Fabrikant, E. Koutsoupias, C.H. Papadimitriou, LNCS 2380, 110 (2002)MathSciNetGoogle Scholar
  6. 6.
    M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the internet topology, in SIGCOMM (ACM Press, 1999), pp. 251-262Google Scholar
  7. 7.
    C. Jin, Q. Chen, S. Jamin, Inet: Internet topology generator, Technical Report CSE-TR443-00, Department of EECS, University of Michigan, 2000Google Scholar
  8. 8.
    C. Kenyon, N. Schabanel, Finer analysis of the FKP random graph model for the Internet, personal communication, 2003Google Scholar
  9. 9.
    R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, E. Upfal, Stochastic models for the Web graph, in Proc. 41st Ann. Symp. on Foundation of Computer Science (FOCS), (IEEE Computer Society, 2000), pp. 57-65Google Scholar
  10. 10.
    A. Medina, I. Matta, J. Byers, Comp. Commun. Rev. 30, 18 (2000)CrossRefGoogle Scholar
  11. 11.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    A. Vazquez, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    S. Yook, H. Jeong, A.L. Barabasi, Proc. Nat. Acad. Sci. 99, 13382 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.LRIUniversité Paris-SudOrsay CedexFrance
  2. 2.CNRS, LIP, ENS LyonLyon Cedex 07France

Personalised recommendations