The European Physical Journal B

, Volume 38, Issue 2, pp 193–199 | Cite as

Packet transport along the shortest pathways in scale-free networks

Article

Abstract.

We investigate a problem of data packet transport between a pair of vertices on scale-free networks without loops or with a small number of loops. By introducing load of a vertex as accumulated sum of a fraction of data packets traveling along the shortest pathways between every pair of vertices, it is found that the load distribution follows a power law with an exponent \(\delta\). It is found for the Barabási-Albert-type model that the exponent \(\delta\) changes abruptly from \(\delta = 2.0\) for tree structure to \(\delta\simeq2.2\) as the number of loops increases. The load exponent seems to be insensitive to different values of the degree exponent \(\gamma\) as long as \(2 < \gamma < 3\).

Keywords

Tree Structure Data Packet Load Distribution Loop Increase Short Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.H. Strogatz, Nature (London) 410, 268 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks (Oxford University Press, Oxford, 2003)Google Scholar
  4. 4.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Erdös, A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. Ser. A 5, 17 (1960)Google Scholar
  6. 6.
    R. Albert, H. Jeong, A.-L. Barabási, Nature (London) 401, 130 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    B.A. Huberman, L.A. Adamic, Nature (London) 401, 131 (1999)ADSGoogle Scholar
  8. 8.
    A. Broder et al. , Computer Networks 33, 309 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    M. Faloutsos, P. Faloutsos, C. Faloutsos, Comput. Commun. Rev. 29, 251 (1999)CrossRefGoogle Scholar
  10. 10.
    R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 88, 108701 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    S. Redner, Eur. Phys. J. B 4, 131 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A.-L. Barabási, H. Jeong, R. Ravasz, Z. Neda, T. Vicsek, A. Schubert, Physica A 311, 590 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Jeong, B. Tombor, R. Albert, Z.N. Oltvani, A.-L. Barabási, Nature (London) 407, 651 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    G. Caldarelli et al. , Phys. Rev. Lett. 89, 258702 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    K.-I. Goh, E. Oh, H. Jeong, B. Kahng, D. Kim, Proc. Natl. Acad. Sci. USA 99, 12583 (2002)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    L.C. Freeman, Sociometry 40, 35 (1977)CrossRefGoogle Scholar
  23. 23.
    M.E.J. Newman, Phys. Rev. E 64, 016132 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    U. Brandes, J. Math. Soc. 25, 163 (2001)CrossRefGoogle Scholar
  25. 25.
    M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002); M.E.J. Newman, Phys. Rev. E 67, 026126 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    K.-I. Goh, E. Oh, B. Kahng, D. Kim, Phys. Rev. E 67, 017101 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    M. Barthélemy, Phys. Rev. Lett. 91, 189803 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    G. Szabó, M. Alava, J. Kertész, Phys. Rev. E 66, 026101 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    J.D. Noh, Phys. Rev. E 67, 045103(R) (2003)ADSCrossRefGoogle Scholar
  30. 30.
    E. Ravasz, A.-L. Barabási, Phys. Rev. E 67, 026112 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    S. Jung, S. Kim, B. Kahng, Phys. Rev. E 65, 056101 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    H. Jeong, S.P. Mason, A.-L. Barabási, Z.N. Oltvai, Nature (London) 411, 41 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    T. Ito et al. , Proc. Natl. Acad. Sci. USA 97, 1143 (1999); T. Ito et al. , Proc. Natl. Acad. Sci. USA 98, 4569 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    B.A. Huberman, L.A. Adamic, e-print (cond-mat/9901071) (1999)Google Scholar
  35. 35.
    R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, E. Upfal, in Proc. IEEE FOCS 2000 (IEEE Computer Society Press, Los Alamitos, CA, 2000), pp. 57-65Google Scholar
  36. 36.
    S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E 63, 025101(R) (2001)ADSCrossRefGoogle Scholar
  37. 37.
    G. Bianconi, A.-L. Barabási, Europhys. Lett. 54, 436 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    R. Solé, R. Pastor-Satorras, E. Smith, T. Kepler, Adv. Complex. Syst. 5, 43 (2002)CrossRefGoogle Scholar
  39. 39.
    D. Meyer, University of Oregon Route Views Archive Project (http://archive.routeviews.org, 2001)Google Scholar
  40. 40.
    K.-I. Goh, C.-M. Ghim, B. Kahng, D. Kim, Phys. Rev. Lett. 91, 189804 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    D. Jasnow, M. Wortis, Phys. Rev. 176, 739 (1968)ADSCrossRefGoogle Scholar
  42. 42.
    K.-I. Goh, B. Kahng, D. Kim, Physica A 318, 72 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • C.-M. Ghim
    • 1
  • E. Oh
    • 1
  • K.-I. Goh
    • 1
  • B. Kahng
    • 1
  • D. Kim
    • 1
  1. 1.School of PhysicsSeoul National University NS50SeoulKorea

Personalised recommendations