Advertisement

The European Physical Journal B

, Volume 38, Issue 2, pp 187–191 | Cite as

Optimization of robustness of complex networks

  • G. PaulEmail author
  • T. Tanizawa
  • S. Havlin
  • H. E. Stanley
Article

Abstract.

Networks with a given degree distribution may be very resilient to one type of failure or attack but not to another. The goal of this work is to determine network design guidelines which maximize the robustness of networks to both random failure and intentional attack while keeping the cost of the network (which we take to be the average number of links per node) constant. We find optimal parameters for: (i) scale free networks having degree distributions with a single power-law regime, (ii) networks having degree distributions with two power-law regimes, and (iii) networks described by degree distributions containing two peaks. Of these various kinds of distributions we find that the optimal network design is one in which all but one of the nodes have the same degree, k1 (close to the average number of links per node), and one node is of very large degree, \(k_2 \sim N^{2/3}\), where N is the number of nodes in the network.

Keywords

Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Albert, H. Jeong, A.-L. Barabási, Nature (London) 406, 378 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    V. Paxon, IEEE/ACM Trans. Networking 5, 601 (1997)CrossRefGoogle Scholar
  3. 3.
    R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    D.S. Callaway, M.E.J. Newmann, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    R. Cohen, D. ben-Avraham, S. Havlin, Structural Properties of scale free networks, Chap. 4 in Handbook of Graphs and Networks, edited by S. Bornholdt, H.G. Schuster (Wiley-VCH, New York, 2002)Google Scholar
  7. 7.
    Note that we study here optimization of the case when the same network is subject to random failure or targeted attack but not combined random failure and targeted attack on the same networkGoogle Scholar
  8. 8.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Faloutsos, P. Faloutsos, C. Faloutsos, Computer Communications Rev. 29, 251(1999)CrossRefGoogle Scholar
  10. 10.
    A.-L. Barabási, R. Albert, H. Jeong, Physica A 281, 69 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    A. Broder, R. Kumar, F. Maghoul, P. Raghaven, S. Rajogopalan, R. Stata, A. Tomkins, J. Wiener, Computer Networks 33, 309 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    H. Ebel, L.-I. Mielsch, S. Bornholdt, Phys. Rev. E. 66, 128701 (2002)Google Scholar
  13. 13.
    S. Redner, Eur. Phys. J. B 4, 131 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and the WWW (Oxford University Press, Oxford, 2003)Google Scholar
  16. 16.
    R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach\/ (Cambridge University Press, 2004)Google Scholar
  17. 17.
    In order to keep \(\langle k \rangle\) constant, as we change \(\lambda\) we also must change m, the minimal number of links a node can have. Note that the value of m decreases as we increase \(\lambda\) Google Scholar
  18. 18.
    We obtain similar results for other values of \(\langle k \rangle\) Google Scholar
  19. 19.
    P. Erdös, A. Rényi, Publications Mathematicae 6, 290 (1959)Google Scholar
  20. 20.
    P. Erdös, A. Rényi, Publications of the Mathematical Inst. of the Hungarian Acad. of Sciences 5, 17 (1960)Google Scholar
  21. 21.
    B. Bollabas, Random Graphs (Academic, London, 1985)Google Scholar
  22. 22.
    L. Braunstein, S.V. Buldyrev, R. Cohen, H.E. Stanley, Phys. Rev. Lett. 91, 168701 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    A.X.C.N. Valente, A. Sarker, H.A. Stone, Phys. Rev. Lett. 92, 118702 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • G. Paul
    • 1
    Email author
  • T. Tanizawa
    • 1
    • 2
  • S. Havlin
    • 1
    • 3
  • H. E. Stanley
    • 1
  1. 1.Center for Polymer Studies and Dept. of PhysicsBoston UniversityBostonUSA
  2. 2.Department of Electrical EngineeringKochi National College of Technology Monobe-Otsu 200-1Nankoku, KochiJapan
  3. 3.Minerva Center and Department of PhysicsBar Ilan UniversityRamat GanIsrael

Personalised recommendations