Evolutionary stabilization of generous replicases by complex formation

  • R. M. FüchslinEmail author
  • S. Altmeyer
  • J. S. McCaskill


The importance of spatial organization for the evolutionary stability of trans-acting replicase systems (\(T\buildrel X \over \longrightarrow 2T)\), where T is a general member of a combinatorial family including the special catalyst X, is now well established, by analytical and Monte Carlo models [1,2]. Complex formation as an intermediate step in replication (\(X + T\rightleftharpoons XT\to X + 2T)\), besides refining the model, enhances co-localization of replicase X and templates T and is shown here to thereby contribute to the evolutionary stability of the catalyst. Applying the established individual molecule stochastic PRESS-framework [3], the performances of cooperative replication with and without intermediate complex formation are compared, and the beneficial effect of complex formation as enhancing stability is studied numerically under various conditions. The results obtained are of value for studies of prebiotic evolution, but also point towards a possible mechanism for stabilizing replication systems in adaptive molecular engineering.


Beneficial Effect Complex Formation Spatial Organization Intermediate Step Individual Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.C. Bjoerlijst, P. Hogeweg, Physica D 48, 17 (1991)Google Scholar
  2. 2.
    J.S. McCaskill, Inaugural Lecture at Friederich Schiller University, Jena, Germany (IMB Press, Jena, Germany, 1994)Google Scholar
  3. 3.
    J.S. McCaskill, R.M. Füchslin, S. Altmeyer, Biol. Chem. 382, 1343 (2001)Google Scholar
  4. 4.
    M. Eigen, Naturwissenschaften 58, 465 (1971)PubMedGoogle Scholar
  5. 5.
    M. Eigen, J.S. McCaskill, P. Schuster, Adv. Chem. Phys. 75, 149 (1989)Google Scholar
  6. 6.
    P. Schuster, Biol. Chem. 382, 1301 (2001)Google Scholar
  7. 7.
    D.S. Wilson, J.W. Szostak, Annu. Rev. Biochem. 68, 611 (1999)CrossRefGoogle Scholar
  8. 8.
    M. Eigen, P. Schuster, Naturwissenschaften 64, 541 (1977)Google Scholar
  9. 9.
    J. Maynard Smith, Nature 280, 445 (1979)Google Scholar
  10. 10.
    C. Bresch, U. Niesert, D. Harnasch, J. Theor. Biol. 85 399 (1980)Google Scholar
  11. 11.
    M. Eigen, Stufen zum Leben (Piper, Munich, Germany, 1987)Google Scholar
  12. 12.
    B. Böddeker, diploma thesis, University of Göttingen, Germany (1995)Google Scholar
  13. 13.
    J.S. McCaskill, Biophys. Chem. 66, 145 (1997)CrossRefGoogle Scholar
  14. 14.
    S. Nee, Phil. Trans. R. Soc. Lond. B 355, 1607 (2000)CrossRefGoogle Scholar
  15. 15.
    R.M. Füchslin, J.S. McCaskill, Proc. Natl. Sci. Acad. 98, 9185 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Kimura, Proc. Natl. Acad. Sci. 80, 6317 (1983)zbMATHGoogle Scholar
  17. 17.
    E. Szathmary, L. Demeter, J. Theor. Biol. 128, 463 (1987)Google Scholar
  18. 18.
    E. Zintzaras, M. Santos, E. Szathmary, J. Theor. Biol. 217, 167 (2002)CrossRefGoogle Scholar
  19. 19.
    B. Drossel, Adv. Phys. 50, 209 (2001)Google Scholar
  20. 20.
    E. Baake, W. Gabriel, Ann. Rev. Comp. Phys. VII, 209 (2000)Google Scholar
  21. 21.
    J.M. Lehn, Proc. Natl. Sci. Acad. 99, 4763 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • R. M. Füchslin
    • 1
    Email author
  • S. Altmeyer
    • 1
  • J. S. McCaskill
    • 1
  1. 1.Fraunhofer - Biomolecular Information Processing Schloss BirlinghovenSt. AugustinGermany

Personalised recommendations