Advertisement

Noise-induced reentrant transition of the stochastic Duffing oscillator

  • K. Mallick
  • P. MarcqEmail author
Article

Abstract.

We derive the exact bifurcation diagram of the Duffing oscillator with parametric noise thanks to the analytical study of the associated Lyapunov exponent. When the fixed point is unstable for the underlying deterministic dynamics, we show that the system undergoes a noise-induced reentrant transition in a given range of parameters. The fixed point is stabilised when the amplitude of the noise belongs to a well-defined interval. Noisy oscillations are found outside that range, i.e., for both weaker and stronger noise.

Keywords

Analytical Study Lyapunov Exponent Bifurcation Diagram Parametric Noise Duffing Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Landau, E.V. Lifchitz, Mechanics (Pergamon Press, Oxford, 1969)Google Scholar
  2. 2.
    R. Graham, A. Schenzle, Phys. Rev. A 26, 1676 (1982)CrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Lücke, F. Schank, Phys. Rev. Lett. 54, 1465 (1985); M. Lücke, in Noise in Dynamical Systems, Vol. 2: Theory of Noise-Induced Processes in Special Applications, edited by F. Moss, P.V.E. Mc Clintock (Cambridge University Press, Cambridge, 1989)CrossRefGoogle Scholar
  4. 4.
    P.S. Landa, A.A. Zaikin, Phys. Rev. E 54, 3535 (1996)CrossRefGoogle Scholar
  5. 5.
    K. Mallick, P. Marcq, Eur. Phys. J. B 36, 119 (2003)CrossRefGoogle Scholar
  6. 6.
    H. Horsthemke, R. Lefever, Noise Induced Transitions (Springer-Verlag, Berlin, 1984)Google Scholar
  7. 7.
    L. Arnold, Random Dynamical Systems (Springer-Verlag, Berlin, 1998)Google Scholar
  8. 8.
    C. van den Broeck, J.M.R. Parrondo, R. Toral, Phys. Rev. Lett 73, 3395 (1994)CrossRefGoogle Scholar
  9. 9.
    L. Schimansky-Geier, H. Herzel, J. Stat. Phys. 70, 141 (1993)zbMATHGoogle Scholar
  10. 10.
    L. Tessieri, F.M. Izrailev, Phys. Rev. E 62, 3090 (2000)Google Scholar
  11. 11.
    P. Imkeller, C. Lederer, Dyn. Systems 16, 29 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    B.J. West, K. Lindenberg, V. Seshadri, Physica A 102, 470 (1980); K. Lindenberg, V. Seshadri, B.J. West, Phys. Rev. A 22, 2171 (1980); Physica A 105, 445 (1981)CrossRefMathSciNetGoogle Scholar
  13. 13.
    A.S. Pikovsky, Phys. Lett. A 165, 33 (1992)CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Maritan, J.Y. Banavar, Phys. Rev. Lett. 72, 1451 (1994); A.S. Pikovsky, Phys. Rev. Lett. 73, 2931 (1994)CrossRefGoogle Scholar
  15. 15.
    E. Sanchez, M.A. Matias, V. Pérez-Muñuzuri, Phys. Rev. E 56, 4068 (1997)CrossRefGoogle Scholar
  16. 16.
    S. Rajasekhar, M. Lakshmanan, Physica A 167, 793 (1990); Physica D 67, 282 (1993)Google Scholar
  17. 17.
    L. Molgedey, J. Schuchhardt, H.G. Schuster, Phys. Rev. Lett. 69, 3717 (1992)CrossRefGoogle Scholar
  18. 18.
    R. Berthet, S. Residori, B. Roman, S. Fauve, Phys. Rev. Lett. 33, 557 (2002); R. Berthet, A. Petrossian, S. Residori, B. Roman, S. Fauve, Physica D 174, 84 (2003)Google Scholar
  19. 19.
    F. Pétrélis, S. Aumaître, Eur. Phys. J. B 34 281 (2003)Google Scholar
  20. 20.
    U. Behn, A. Lange, T. John, Phys. Rev. E 58, 2047 (1998)CrossRefGoogle Scholar
  21. 21.
    A. Becker, L. Kramer, Phys. Rev. Lett. 73, 955 (1994); Physica D 90, 408 (1996); J. Röder, H. Röder, L. Kramer, Phys. Rev. E 55, 7068 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Service de Physique ThéoriqueCentre d’Études de SaclayGif-sur-Yvette CedexFrance
  2. 2.Institut de Recherche sur les Phénoménes Hors ÉquilibreUniversité de ProvenceMarseille Cedex 13France

Personalised recommendations