Photonic-band-gap structures and guide modes in two-dimensional magnetic photonic crystal heterostructures

  • Yun-Song Zhou
  • Ben-Yuan GuEmail author
  • Fu-He Wang


We first investigate the band gap structures of two-dimensional magnetic photonic crystals (MPC) composed of rectangular (square) magnetic cylinders embedded in a host dielectric material in the rectangular (square) lattice, and we then study guide modes at interface of MPC heterostructures (MPCHs) by use of plane wave expansion method in combination with supercell technique. We find that both the mirror-symmetric MPCHs and the mixed-type MPCHs composed of square cylinders in a square lattice can produce the TM guide modes even without any lattice distortions. This feature is quite different from that of the non-magnetic PC heterostructures, in which the occurrence of the guide modes requires the relatively longitudinal gliding or transverse displacement of lattices. It may provide a new way to generate guide modes and apply to the device of light wave guides.


Photonic Crystal Guide Mode Rectangular Cylinder Plane Wave Expansion Method Magnetic Photonic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    S.I. Bozhevolnyi, J. Erland, K. Leosson, M.W. Skovgaard, J.M. Hvam, Phys. Rev. Lett. 86, 3008 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Lan-Lan Lin, Zhi-Yuan Li, Phys. Rev. B 63, 033310-1 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Yun-Song Zhou, Ben-Yuan Gu, Fu-He Wang, J. Phys.: Condens. Matter 15, 4109 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    A.R. McGurn, A.A. Maradudin, Phy. Rev. B 48, 17576 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    K. Busch, S. John, Phys. Rev. Lett. 83, 967 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, V. Lehmann, Phys. Rev. B 61, R2389 (2000)Google Scholar
  11. 11.
    M.M. Sigalas, C.M. Soukoulis, R. Biswas, K.M. Ho, Phys. Rev. B 56, 959 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Chul-Sik Kee, Jae-Eyn Kim, Hae Yong Park, Phys. Rev. B 61, 15523 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    A. Figotin, I. Vitebsky, Phys. Rev. E 63, 066609 (2001)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    C.-S. Kee, J.-E. Kim, H.Y. Park, S.J. Kim, H.C. Song, Y. S. Kwon, N.H. Myung, S.Y. Shin, H. Lim, Phys. Rev. E 59, 4695 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    R.Z. Wang, X.H. Wang, B.Y. Gu, G.Z. Yang, J. Appl. Phys. 90, 4307 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of PhysicsCapital Normal UniversityBeijingP.R. China
  2. 2.CCAST (World Lab.)BeijingP.R. China
  3. 3.Institute of PhysicsChinese Academy of SciencesBeijingP.R. China

Personalised recommendations