Advertisement

The European Physical Journal B

, Volume 38, Issue 2, pp 239–243 | Cite as

Large scale properties of the Webgraph

  • D. Donato
  • L. LauraEmail author
  • S. Leonardi
  • S. Millozzi
Article

Abstract.

In this paper we present an experimental study of the properties of web graphs. We study a large crawl from 2001 of 200M pages and about 1.4 billion edges made available by the WebBase project at Stanford [17]. We report our experimental findings on the topological properties of such graphs, such as the number of bipartite cores and the distribution of degree, PageRank values and strongly connected components.

Keywords

Experimental Study Experimental Finding Topological Property Scale Property Large Scale Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Albert, H. Jeong, A.L. Barabasi, Nature 401, 130 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    A.L. Barabasi, A. Albert, Science 286, 509 (1999)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Brin, L. Page, Computer Networks and ISDN Systems 30, 107 (1998)CrossRefGoogle Scholar
  4. 4.
    A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, S. Stata, A. Tomkins, J. Wiener, Computer Networks 33, 309 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    C. Cooper, A. Frieze, A general model of undirected web graphs, in Proc. of the 9th Annual European Symposium on Algorithms (ESA), LNCS 2161 (Spinger-Verlag, 2001), pp. 500-511Google Scholar
  6. 6.
    Cyvellance, http://www.cyvellance.comGoogle Scholar
  7. 7.
    P. Erdös, R. Renyi, Publ. Math. Inst. Hung. Acad. Sci. 5 (1960)Google Scholar
  8. 8.
    J. Kleinberg, J. ACM 46, 604 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, E. Upfal, Random graph models for the web graph, in Proc. of 41st FOCS, pp. 57-65, 2000Google Scholar
  10. 10.
    R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Trawling the web for emerging cyber communities, in Proc. of the 8th WWW Conference, pp. 403 (1999)Google Scholar
  11. 11.
    L. Laura, S. Leonardi, G. Caldarelli, P. De Los Rios, A multi-layer model for the webgraph, in On-line proceedings of the 2nd International Workshop on Web Dynamics, 2002Google Scholar
  12. 12.
    L. Laura, S. Leonardi, S. Millozzi, A software library for generating and measuring massive webgraphs, Technical Report 05-03, DIS - University of Rome La Sapienza, 2003Google Scholar
  13. 13.
    L. Laura, S. Leonardi, S. Millozzi, U. Meyer, J.F. Sibeyn, Algorithms and experiments for the webgraph, in Proc. of the 11th Annual European Symposium on Algorithms (ESA), Vol. 2461 of Lecture Notes in Computer Science (Springer-Verlag, 2002)Google Scholar
  14. 14.
    M. Mitznmacher, A Brief History of Generative Models for Power Law and Lognormal Distributions, Internet Mathematics 1 (2) (to appear)Google Scholar
  15. 15.
    G. Pandurangan, P. Raghavan, E. Upfal, Using pagerank to characterize web structure, in Proc. of the 8th Annual International Conference on Combinatorics and Computing (COCOON)Google Scholar
  16. 16.
    D.M. Pennock, G.W. Flake, S. Lawrence, E.J. Glover, C.L. Giles, Proc. National Ac. Sci. 99, 5207 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    The stanford webbase project, http://www-diglib.stanford.edu/~testbed/doc2/WebBase/Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Dipartimento di Informatica e SistemisticaUniversitá di Roma “La Sapienza”RomaItaly

Personalised recommendations