Advertisement

The European Physical Journal B

, Volume 38, Issue 2, pp 253–260 | Cite as

Random model for RNA interference yields scale free network

  • D. Balcan
  • A. ErzanEmail author
Article

Abstract.

We introduce a random bit-string model of post-transcriptional genetic regulation based on sequence matching. The model spontaneously yields a scale free network with power law scaling with \( \gamma = -1\) and also exhibits log-periodic behaviour. The in-degree distribution is much narrower, and exhibits a pronounced peak followed by a Gaussian distribution. The network is of the smallest world type, with the average minimum path length independent of the size of the network, as long as the network consists of one giant cluster. The percolation threshold depends on the system size.

Keywords

System Size Percolation Threshold Genetic Regulation Scale Free Network Small World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Eigen, Naturwissenschaften 10, 58 (1971)Google Scholar
  2. 2.
    S.A. Kauffman, J. Theor. Biol. 22, 437 (1969)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Kauffman, The Origins of Order: Self-organization and Selection in Evolution (Oxford University Press, N.Y. 1993)Google Scholar
  4. 4.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988); K. Sneppen, P. Bak, H. Flyvberg, M.H. Jensen, Proc. Natl. Acad. Sci. 92, 5209 (1995)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Atlan, F. Fogelman-Soulie, J. Salomon, et al. , Random Boolean Networks Cybernet. Syst. 12, 103 (1981)MathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Derrida, G. Weisbuch, J. Phys. France 47, 1297 (1986)CrossRefGoogle Scholar
  7. 7.
    B. Derrida, Y. Pomeau, Europhys. Lett. 1, 45 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    B. Derrida, H. Flyvberg, J. Phys. A 20, L1107 (1987)Google Scholar
  9. 9.
    S. Maslov, K. Sneppen, Science 296, 910 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    S. Maslov, Midterm Conference COSIN on “Growing Networks and Graphs in Statistical Physics, Finance, Biology and Social Systems”, Rome, 1-5 September 2003 (see this issue)Google Scholar
  11. 11.
    P. Erdös, Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)Google Scholar
  12. 12.
    S.N. Dorogovstsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    N.A. Campbell, J.B. Reece, Biology (Addison Wesley, San Francisco, 2002), pp. 363-368Google Scholar
  15. 15.
    R.V. Sole, R. Pastor-Satorras, Complex Networks in Genomics and Proteomics, edited by S. Bornholdt, H.G. Schuster, Handbook of Graphs and Networks (Wiley-VCH Verlag, Berlin, 2002)Google Scholar
  16. 16.
    T. Maniatis, R. Reed, Nature 416, 499 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    G.J. Hannon, Nature 418, 244 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    B. Alberts et al. , Molecular Biology of the Cell (Garland Science, N.Y., 2002), p. 375 ffGoogle Scholar
  19. 19.
    B. Alberts et al. , Op. cit., pp. 451-452Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Sciences and LettersIstanbul Technical UniversityMaslak. IstanbulTurkey
  2. 2.Gürsey InstituteÇengelköy, IstanbulTurkey

Personalised recommendations