Characterizing neuromorphologic alterations with additive shape functionals

  • M. S. Barbosa
  • L. da F. Costa
  • E. S. Bernardes
  • G. Ramakers
  • J. van Pelt
Article

Abstract

The complexity of a neuronal cell shape is known to be related to its function. Specifically, among other indicators, a decreased complexity in the dendritic trees of cortical pyramidal neurons has been associated with mental retardation. In this paper we develop a procedure to address the characterization of morphological changes induced in cultured neurons by over-expressing a gene involved in mental retardation. Measures associated with the multiscale connectivity, an additive image functional, are found to give a reasonable separation criterion between two categories of cells. One category consists of a control group and two transfected groups of neurons, and the other, a class of cat ganglionary cells. The reported framework also identified a trend towards lower complexity in one of the transfected groups. Such results establish the suggested measures as an effective descriptors of cell shape.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. van Ooyen, J. Duijnhouwer, M.W.H. Remme, J. van Pelt, Network Comput. Neural Syst. 13, 311 (2002)CrossRefGoogle Scholar
  2. 2.
    G.A. Ascoli, Anatomical Record (New Anat.) 257, 195 (1999)CrossRefGoogle Scholar
  3. 3.
    J. van Pelt, H.B.M. Uylings, Natural variability in the geometry of dendritic branching patterns, Modeling in the neurosciences-from ionic channels to neural networks, edited by R.R. Poznanski (Harwood Academic publishers, Amsterdam, 1999), pp. 79-108Google Scholar
  4. 4.
    L. da F. Costa, R.M. Cesar, R.C. Coelho, J.S. Tanaka, Analysis and synthesis of morphologically realistic neural networks, Modeling in the neurosciences-from ionic channels to neural networks, edited by R.R. Poznanski (Harwood Academic publishers, Amsterdam, 1999), pp. 505-527Google Scholar
  5. 5.
    R.M. Cesar, L. da F. Costa, Rev. Sci. Instrum 68, 2177 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    L. da F. Costa, T.J. Velte, J. Comparative Neurology 404, 33 (1999)CrossRefGoogle Scholar
  7. 7.
    S. Douady, Y. Coulder, Phys. Rev. Lett. 68, 2098 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    S. Douady, Y. Coulder, La Recherche 24, 26 (1993)Google Scholar
  9. 9.
    P. Pruzinkiewicz, A. Lindenmayer, The algorithmic beauty of the plants (Springer Verlag, New York, 1990)Google Scholar
  10. 10.
    S.R. y Cajal, Textura del sistema nervioso del hombre y los vertebrados (Oxford University Press), pp. 1894-1904 [English translation by N. and L.W. Swanson]Google Scholar
  11. 11.
    S.D. Washington, G.A. Ascoli, J.L. Krichmar, Neurocomputing 32-33, 261 (2000)Google Scholar
  12. 12.
    H.B.M. Uylings, J. van Pelt, Network: Comput. Neural Syst. 13, 397 (2002)CrossRefGoogle Scholar
  13. 13.
    J.M. Devaud, B. Quenet, J. Gascuel, C. Masson, Bull. Mathematical Biology 62, 657 (2000)CrossRefGoogle Scholar
  14. 14.
    Neural shape and function, Special Issue, Brain and Mind 4 (2003)Google Scholar
  15. 15.
    R.M. Cesar, L. da F. Costa, Biological Cybernetics 79, 347 (1998)MATHCrossRefGoogle Scholar
  16. 16.
    A.X. Falcao, L. da F. Costa, B.S. Cunha, Pattern recognition 7, 1571 (2002)CrossRefGoogle Scholar
  17. 17.
    K. Morigiwa, M. Tauchi, Y. Fukuda, Neurosci. Res. 10, S131-9 (1989)Google Scholar
  18. 18.
    R.C. Coelho, L. da F. Costa, Appl. Signal Processing 3, 163 (1996)Google Scholar
  19. 19.
    K. Michielsen, H. de Raedt, Phys. Rep. 347, 461 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    K. Michielsen, H. de Raedt, Comput. Phys. Commun. 132, 94 (2000)ADSMATHCrossRefGoogle Scholar
  21. 21.
    L.A. Santaló, Integral Geometry and Geometric Probability (Addison-Wesley, Reading, Ma, 1976)Google Scholar
  22. 22.
    D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its applications (Wiley, West Sussex, England, 1995)Google Scholar
  23. 23.
    K.R. Mecke, Int. J. Mod. Phys. 12, 861 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    M.S. Barbosa, L. da F. Costa, Phys. Rev. E 67, 061910 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    L. da F. Costa, E.T.M. Manoel, Optical Engineering 40, 1752 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    D.A. Sholl, J. Anat. 87, 387 (1953)ADSGoogle Scholar
  27. 27.
    H.G. Krapp, B. Hengstenberg, R. Hengstenberg, J. Neurophysiol. 79, 1902 (1998)Google Scholar
  28. 28.
    K.R. Mecke, Phys. Rev. E 53, 4794 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    D.E. Hillman, Neuronal shape parameters and substructures as a basis of neuronal form, The neurosciences, fourth study program, edited by F. Schmidt (MIT Press, Cambridge, MA, 1979), pp. 477-498Google Scholar
  30. 30.
    A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995)Google Scholar
  31. 31.
    H.B.M. Uylings, J. van Pelt, R.W.H. Verwer, P. McConnell, Statistical analysis of neuronal populations, Computer tecniques in neuroanatomy, edited by J.J. Capowski (Plenum, New York, 1989), pp. 241-64Google Scholar
  32. 32.
    L. da F. Costa, Real-Time Imaging 6, 415 (2000)MATHCrossRefGoogle Scholar
  33. 33.
    L. da F. Costa, Rev. Sci. Instrum.-Computer Vision 66, 3770 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    J.P. Antoine, D. Barache, R.M. Cesar, L. da F. Costa, Signal Processing 62, 265 (1997)MATHCrossRefGoogle Scholar
  35. 35.
    R.C. Coelho, V.D. Gesu, G.L. Bosco, J.S. Tanaka, C. Valenti, Real-Time Imaging 8, 213 (2002)MATHCrossRefGoogle Scholar
  36. 36.
    G.J.A. Ramakers, J. Winter, T.M. Hoogland, M.N. Lequin, P. van Hulten, Dev. Brain Res. 108, 205 (1998)CrossRefGoogle Scholar
  37. 37.
    L da F. Costa, E.T.M. Manoel, F. Faucereau, J. Chelly, J. van Pelt, G. Ramakers, Network: Comput. Neural Syst. 13, 283 (2002)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Authors and Affiliations

  • M. S. Barbosa
    • 1
  • L. da F. Costa
    • 1
  • E. S. Bernardes
    • 2
  • G. Ramakers
    • 3
  • J. van Pelt
    • 3
  1. 1.Cybernetic Vision Research Group, GII-IFSCUniversidade de São PauloSão Carlos, SPBrasil
  2. 2.DFCM-IFSCUniversidade de São PauloSão Carlos, SPBrasil
  3. 3.Neurons and NetworkNetherlands Institute of Brain ResearchAZ AmsterdamThe Netherlands

Personalised recommendations