Advertisement

The European Physical Journal B

, Volume 38, Issue 2, pp 183–186 | Cite as

Structure of cycles and local ordering in complex networks

  • G. Caldarelli
  • R. Pastor-SatorrasEmail author
  • A. Vespignani
Article

Abstract.

We study the properties of quantities aimed at the characterization of grid-like ordering in complex networks. These quantities are based on the global and local behavior of cycles of order four, which are the minimal structures able to identify rectangular clustering. The analysis of data from real networks reveals the ubiquitous presence of a statistically high level of grid-like ordering that is non-trivially correlated with the local degree properties. These observations provide new insights on the hierarchical structure of complex networks.

Keywords

Complex Network Hierarchical Structure Real Network Local Behavior Minimal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    A. Vázquez, R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 066130 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    E. Ravasz, A.-L. Barabási, Phys. Rev. E 67, 026112 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    B. Bollobás, Modern Graph Theory (Springer-Verlag, New York, 1998)Google Scholar
  10. 10.
    P. Erdös, P. Rényi, Publicationes Mathematicae 6, 290 (1959)Google Scholar
  11. 11.
    A. Vázquez, R. Pastor-Satorras, A. Vespignani, Internet topology at the router and autonomous system level, 2002, e-print cond-mat/0206084Google Scholar
  12. 12.
    A. Vázquez, A. Flammini, A. Maritan, A. Vespignani, ComPlexUs 1, 38 (2003)CrossRefGoogle Scholar
  13. 13.
    P. Holme, C.R. Edling, F. Liljeros, Structure and time-evolution of the Internet community pussokram.com, 2002, e-print cond-mat/0210514Google Scholar
  14. 14.
    G. Bianconi, A. Capocci, Phys. Rev. Lett. 90, 078701 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M.E.J. Newman, in Handbook of Graphs and Networks: From the Genome to the Internet, edited by S. Bornholdt, H.G. Schuster (Wiley-VCH, Berlin, 2003), pp. 35-68Google Scholar
  16. 16.
    M. Molloy, B. Reed, Random Struct. Algorithms 6, 161 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M.E.J. Newman, J. Park, Phys. Rev. E 68, 036122 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    M. Faloutsos, P. Faloutsos, C. Faloutsos, Comput. Commun. Rev. 29, 251 (1999)CrossRefGoogle Scholar
  19. 19.
    R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    A.-L. Barabási, R. Albert, H. Jeong, Physica A 281, 69 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    B.A. Huberman, L.A. Adamic, Nature 401, 131 (1999)ADSGoogle Scholar
  22. 22.
    A. Wagner, Mol. Biol. Evol. 18, 1283 (2001)CrossRefGoogle Scholar
  23. 23.
    H. Jeong, S.S. Mason, A.L. Barabási, Z.N. Oltvai, Nature 411, 41 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    M.E.J. Newman, Phys. Rev. E 64, 016131 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    A.-L. Barabási et al. , Physica A 311, 590 (2002)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • G. Caldarelli
    • 1
  • R. Pastor-Satorras
    • 2
    Email author
  • A. Vespignani
    • 3
  1. 1.INFM UdR Roma 1, Dipartimento di FisicaUniversitá “La Sapienza”RomaItaly
  2. 2.Departament de Física i Enginyeria NuclearUniversitat Politécnica de CatalunyaBarcelonaSpain
  3. 3.Laboratoire de Physique Théorique (UMR du CNRS 8627)Bâtiment 210, Université de Paris-SudOrsay CedexFrance

Personalised recommendations