Advertisement

The European Physical Journal B

, Volume 38, Issue 2, pp 305–309 | Cite as

Multi-component static model for social networks

  • D.-H. Kim
  • B. KahngEmail author
  • D. Kim
Article

Abstract.

The static model was introduced to generate a scale-free network. In the model, N number of vertices are present from the beginning. Each vertex has its own weight, representing how much the vertex is influential in a system. The static model, however, is not relevant, when a complex network is composed of many modules such as communities in social networks. An individual may belong to more than one community and has distinct weights for each community. Thus, we generalize the static model by assigning a q-component weight on each vertex. We first choose a component \((\mu)\) among the q components at random and a pair of vertices is linked with a color μ according to their weights of the component \((\mu)\) as in the static model. A (1-f) fraction of the entire edges is connected following this way. The remaining fraction f is added with (q + 1)-th color as in the static model but using the maximum weights among the q components each individual has. The social activity with such maximum weights is an essential ingredient to enhance the assortativity coefficient as large as the ones of real social networks.

Keywords

Color Social Network Static Model Social Activity Complex Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.H. Strogatz, Nature 410, 268 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    B.A. Huberman, L.A. Adamic, Nature 401, 131 (1999)ADSGoogle Scholar
  7. 7.
    K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    For example, E.M. Jin, M. Girvan, M.E.J. Newman Phys. Rev. E 64, 046132 (2001); J. Davidsen, H. Ebel, S. Bornholdt, Phys. Rev. Lett. 88, 128701 (2002); L. López, M.A.F. Sanjuán, Phys. Rev. E 65, 036107 (2002); K. Klemm, V.M. Eguiluz, R. Toral, M.S. Miguel, Phys. Rev. E 67, 026120 (2003); A. Vazquez, Phys. Rev. E 67, 056104 (2003); G. Csányi, B. Szendrői, cond-mat/0305580CrossRefGoogle Scholar
  9. 9.
    D.J. Watts, P.S. Dodds, M.E.J. Newman, Science 296, 1302 (2002); See also J.M. Kleinberg, in Proceedings of the 2001 Neural Information Processing Systems Conference (MIT Press, Cambridge, 2002); A.E. Motter, T. Nishikawa, Y.-C. Lai, Phys. Rev. E 68, 036105 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    S. Milgram, Psychology Today 1, 60 (1967); J. Travers, S. Milgram, Sociometry 32, 425 (1969)Google Scholar
  11. 11.
    M.E.J. Newman, Phys. Rev. E 68, 026121 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 8271 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M.E.J. Newman, J. Park, Phys. Rev. E 68, 036122 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002); Phys. Rev. E 67, 026126 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    D.S. Callaway, J.E. Hopcropt, J.M. Kleinberg, M.E.J. Newman, S.H. Strogatz, Phys. Rev. E 64, 041902 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001); Phys. Rev. E 64, 016131 (2001); Phys. Rev. E 64, 016132 (2001)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A.-L. Barabási, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, T. Vicsek, Physica A 311, 590 (2002)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    http://www.imdb.comGoogle Scholar
  21. 21.
    M.S. Granovetter, Am. J. Sociol. 78, 1360 (1973)CrossRefGoogle Scholar
  22. 22.
    M.E.J. Newman, D.J. Watts, S.H. Strogatz, Proc. Natl. Acad. Sci. USA 99, 2566 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    F. Chung, L. Lu, Adv. Appl. Math. 26, 257 (2001)CrossRefGoogle Scholar
  24. 24.
    A.-L. Barabási, Linked: The New Science of Networks (Perseus, Cambridge, 2002)Google Scholar
  25. 25.
    G. Caldarelli, A. Capocci, P. De Los Rios, M.A. Muñoz, Phys. Rev. Lett. 89, 258702 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.School of Physics and Center for Theoretical PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations